Programming - User Support

Applications

Issue Number 38 May | june 1989 $3.00

ISSN # 0748-9331

C Math
Handling Dollars & Cents With C

Advanced CP/M

Batch Processing and a new ZEX

C Pointers, Arrays and Structures Made Easier
Part 2: Arrays

The Z-System Corner

Information Engineering
The Portable Information Age

Computer Aided Publishing
Shells

ZEX and Hard Disk Backups

Real Computing
The National Semiconductor NS320XX

ZSDOS

Anatomy of an Operating System

THE COMPUTER JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Circulation
Donna Carison

Contributing Editors

C. Thomas Hilton
Bill Kibler
Bridger Mitchell
Bruce Morgan
Richard Rodman
Jay Sage
Barry Workman

The Computer Journal is
published six times a year by
Publishing Consultants, 190
Sullivan Crossroad, Columbia
Falls, MT 59912 (406) 257-9119

Entire contents copyright©
1989 by Publishing Consultants.

Subscription rates—$16 one
year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912.

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 38 May/ June 1989

EBditorial.......oooovi e e 2
C Math

Using Greenleaf’s Business MathLib to overcome
C’s floating point problems.
DY Art CarlSON. . .. oottt e e et ettt et 4

Advanced CP/M

Batch processing and a new ZEX.

by Bridger MitChell.ottt 7
C Pointers, Arrays and Structures Made Easier

Part 2: Arrays.

DY CIEM PODPOI. .. .o ettt 13
The Z-System Corner

Shells and ZEX, high level language Z-System

Support, new Z-Node Central, system security

under Z-Systems.

DY JaY S8GE. . e 17

Information Engineering

We will have to revise our software and work

habits in order to take advantage of the new

portable computers.

by C.Thomas Hiltonu et 21
Computer Aided Publishing

Introduction to publishing and Desk Top

Publishing.

BYArtCarlSON. ... 24
Shells

Zex and hard disk backups.

DY RIiCk CRAINes.ooui e e 25
Real Computing

The National Semiconductor NS320XX.

by Richard Rodman.o uuiieiianiniin, 32
ZSDOS—Anatomy of an Operating System

Part 2
by Harold F. Bower and Cameron W. Cotrill. 33

Computer Corner by BiliKibler............................... 44

Editor’s Page

A Computer Users’ Manifesto

The people responsible for the success
of the microcomputers were the users who
saw the possibilities of what they could
accomplish with their own individual sys-
tem. The existing multiuser multitasking
computers were too expensive and too
complex—they were run by computer
priests and only companies with deep pock-
ets could afford them. The users wanted
something inexpensive enough sothat they
could afford it, and simple enough so that
they could use it.

The first few microcomputers were only
useful to the experimenter and the techie,
but when the Apple IT appeared, the users
became involved. The Apple 11+ wasn’t
much compared with today’s standards. It
was slow, had anemic drives and limited
RAM, but it had BASIC in ROM and it
encouraged the user to get involved. Pro-
fessional business people started writing
programs to solve their problems, and the
software developers followed with pro-
grams designed for the business user.

Whenthe IBM PC appeared, it was also
very limited by today’s standards,and IBM
intendedit as a supplement for their corpo-
rate accounts, not for the current end user
market. But, again, professional business
people envisioned what it could do, and
developers started writing software for
individual user applications.

These two machines are responsible for
the micro market of today. The Apple 11+
showed what could be done with desktop
micros, and the IBM PC gave the micro
credibility. It is very important to recognize
that the market grew to its current size
because of involved professional business
users. The growth was not due to large
corporations buying micros, and it was not
due to large corporations developing huge
software products — these came later, they
were the effect, not the cause. Computer
Shopper did not reach its current 600 page
size because of large corporate computer
users. It was individuals and small busi-

nesses which subscribed and bought the
products from their advertisers which
made it a success.

Today, the marketing emphasis is on
complex networked multiuser multi-
tasking systems with enough power to re-
place the mainframes of a few years ago. It
takes a full time professional programmer
to work with these systems, in fact they are
too much for one person and require a
team effort. And, the equipment and im-
plementation efforts are so expensive that
only large companies with deep pockets
can afford them. It is very similar to what
existed before the micros became popular,
and we’re back to square one again.

‘We must realize that there are applica-
tions for networked multiuser multitasking
micros tended by the new generation of
computer priests. There are also applica-
tions for plug and play appliance level sys-
tems for non-involved users. These mar-
kets are receiving a lot of marketing atten-
tion. But, there is also a great demand for
products for the involved users, and this
demand is not receiving the attention it
should.

The Second Computer Revolution

In the first computer revolution, indi-
viduals acquired computer power which
had been restricted to the establishment.
But now, computing power is again being
concentrated in large organizations, and it
is time to return the power to the people!
This will require that we again focus on
systems which can be implemented by a
knowledgeable end user.

We are not Luddites resisting change,
rather we want to guide the change in a
different direction. We don’t propose
going back to machines with 40 column
screens and less than 64K of RAM, we
want to use all the power available now and
in the future. But we want hardware and
software with which an individual can im-
plement the system which does what they
want.

A professional business person should
know more about what is needed for their
business than any computer consultant
they can hire. If they don’t, they should hire
a business consultant to find out what it is
that they should be doing. A doctor, den-
tist, lawyer, baker, hardware store owner,
or real estate agent, should be able to de-
sign and implement their own application
specific programs. Perhaps not the com-
plete accounting program, but certainly
the customer, inventory, management,
and technical reference applications. Ev-
eryone has slightly different needs, and the
prepared programs are never quite right.
How many dentists are going to be able to
program for OS/2 or Windows?

Who is the User?

In a simple case such as a word proces-
sor, the user is the one who sits at the
keyboard and sees it on the screen. With
tools, it gets more complicated.

For example, for a C Windows library
whichis intended to be incorporated into a
C program, is the user the C programmer
oris it the programmer’s client? In this case
there are really two users whomust bothbe
satisfied. The programmer is the user of
the window programming environment,
andit must treat the programmer as a user
instead of a techie while the programmer is
generating the program. The program-
mer’s client is the user of the completed
program, and the library functions must
satisfy the client’s end user expectations.

Programmers have the fault of design-
ingaprogramto be used by other program-
mer techies, even when they intend to sell it
to an end user such as a real estate agent.
Software should be judged from the view-
point of its intended audience, not strictly
from the viewpoint of another program-
mer. A programmer should analyze the
package for programming defects which
could have disastrous results, but an end
user should determine if it serves its in-
tended purpose. Software can receive rave
reviews from programmers because it uses

The Computer Journal/ Issue #38

all the newest in vogue programming
tricks, but it can still be useless for its in-
tended purpose. Great programming does
not necessarily mean a great product!

What Does the Future Hold?

We are not yet aware of the significant
changes in our lifestyles which will result
" when personal computers are in wide-
spread use. Before computers are ac-
cepted by the general public, people will
have to be able to make computers dowhat
they want without feeling challenged, in-
timidated, or frustrated. The industry has
abused the phrase User Friendly, but the
“systems will have to become transparent to
the user. The focus has been on learning
how to use the tools, but it should be on
how to accomplish what the mind con-
ceives!

I feel that consultants should concen-
trate on assisting small business clients by
performing a needs analysis, selecting the
hardware and software, and training the
client in designing and implementing the
application. There will always be clients
who want a finished product with no input
on their part; but clients should be encour-
aged to become involved as much as pos-
sible, with the consultant there to advise
and to take care of any portions which the
client can not handle. Of course, the con-
sultant will also service those clients who
would rather just write a check and have
the completed project droppedin their lap.

Hardware has advanced far beyond the
capabilities of the software. Now, we must
develop the software which can utilize the
full hardware capabilities, and yet which
can be fully implemented by professional
business people. This is a real challenge
with great potential rewards for the suc-
cessful players.

Data Portability

The computer industry is depending on
sales for business computer applications,
but the products do not satisfy the business
users. There are many areas which must be
improved, but data portability is one of the
most critical.

Most installations have been made with
the intention that all the operations will be
performed on the one system. This is a
carry-over from mainframes, but now with
computers on every desktop, the users
expect to share resources with other sys-
tems. Our consulting work brings us in
contact with a lot of the problems, and the
two areas which generate the most com-
plaints are wordprocessor files and data
base data files.

The Computer Journal / Issue #38

A good example is where one of our
clients wanted some important letters run
off on a friend’s daisy wheel printer instead
of his dot matrix printer. They were both
using IBM clones and 360K disks, but they
had different word processors and could
not use the same text file. They figured out
that the easiest solution was to move the
daisy wheel printer, but the originating
system would not talk to the printer. That’s
when they called me.

I asked a few questions, then explained
that the dot matrix printer had a parallel
interface while the daisy wheel had a serial
interface. They became very confused
when I tried to explain how they could use
the MODE command to change to the
serial interface and decided that they
needed the file translated. In some cases
files can be transferred between
wordprocessors through the use of an
ASCII file, but in this case it wouldn’t work
because it included boldfacing. The pres-
ence of boldfacing also ruled out writing
the print file out todisk and sending it to the
printer on the second unit as a binary file
transfer because it would include incorrect
printer escape codes.

I am currently getting a lot of requests
for text file translations, and this gave me
another chance to try Timeworks Beyond
Word Writer. 1t did the job fast and easy,
and I like their user interface —in fact I like
the whole software package and am taking
a very serious look at it for my primary
word processor. It provides a lot of features
without overwhelming the user or getting
in the way. The entire wordprocessor in-
cluding the file exchange program sells for
$199.95, which is not much more than
some programs which only translate files.
Contact Timeworks, Inc., 444 Lake Cook
Road, Deerfield, IL 60015, phone (312)
948-9200. Their Publish It! and Publish It
Light! desktop publishing programs are
also very attractive for someone who does
not need the power and complexity of
PageMaker.

Another translation program is Word
For Word by Design Software, but they
won’t answer my phone calls so I suggest
that you avoid that product.

Database files present some very seri-
ous problems. Any worthwhile database
program must provide some means for
importing or exporting data, but I often
find systems which have no provisions for
data transfer. The developers apparently
feel that the user will have to come back to
them for any future needs. I can under-
stand that the developer needs to control
inputin order to protect the consistency of

the database. There is no excuse for not
providing for output in a standard disk file
where the user may want special purpose
output from a third party for laser output,
cheshire labels processed for third class
bulk mail, or to merge names with a outside
list for mailing —or even to move the date
to a different database system.

Endusers have much different expecta-
tions than computer experts. The users
expect transportability between programs
and systems. They are starting to flex their
muscles and to demand what they need,
rather that accepting whatever the experts
offer. Don’t be surprised to see this tested
in court within the next few years.

MAC<-->PC

The widespread use of DTP has re-
sulted in a demand for transferring files
between the Mac and the PC. Many of the
people involved do not have access to
modems, and they need to have their
wordprocessor text files moved from one
system to the other.

There are a number of approaches to
the problem. The most obvious solution is
to have both machines and have them
communicate. But, most of us can’t justify
buying the second machine (and learning
to use it) solely for file transfer purposes.
Another choice is connecting with a mo-
dem. But, in this rather isolated area it is
difficult to find someone with the desired
machine who has a modem. It could also
require a several hour round trip to go get
the disk after transfer.

1 felt that the best solution for my situ-
ation was to enabie addressing MAC disks
withmy AT Turbo clone which already had
a 3.5 inch drive. I contacted Central Point
Software (15220 N.W. Greenbrier Pkwy.
#200, Beaverton, OR 97006, (503) 690-
8090) about their Copy II PC Deluxe Op-
tion Board, and they supplied a board for
evaluation.

The half-length board fits in the AT
slot, and is connected to the drive control-
lerand the drives. Afterloading the disk file
the 3.5 drive can be accessed as a MAC
drive with commands such as MCOPY,
MDIR, etc. The drive still acts like a regu-
lar PC drive when used with the usual
commands.

I had a few problems formatting and
writing MAC disks when I first got the
board, butthe drive was flaky and had been
giving trouble as a regular AT drive. I re-
placed the drive with a Teac, and that
solved the problems for both AT and MAC

disks.
(Continued on page 40)

C Math

Handling Dollars and Cents With C

by Art Carlson

I doubt that many people are as naive as I was when I got my
first computer in 1982 and started programming in BASIC. I
believed that what was displayed on the screen or sent to the prin-
ter was the same as what was stored in the computer. I also
believed that when I printed a column of numbers plus their total,
that the total would agree with the sum of the column.

I was shocked when I discovered that sometimes things added
up, and other times they didn’t. I soon narrowed it down to the
fact that calculations done with whole numbers (such as 2, 34, 10,
etc.) were correct, but that calculations done with decimal frac-
tions (such as 2.14, 5.34, 6.83, etc.) were frequently in error in the
last place. That’s when I learned about integer (the whole num-
bers) and floating point (the decimal fractions) math.

I have chosen C used in conjunction with Bytel’s Genifer (an
application generator) and WordTech’s dBXL and Quicksilver
for business applications. This combination gives me the ability to
do almost anything that I need to do, but I have been concerned
about the the floating point errors when using C for financial
calculations. The project was at a standstill because I hesitated to
spend the effort required to write a C library for financial
calculations. So, when Greenleaf Software announced their
Business MathLib for C, I contacted them for more information.
Their library does much more than what I had planned, and now I
can proceed with the project. I’ll cover the Business MathLib in
more detail, but first let’s clarify what’s wrong with floating
point,

The Problem With Floating Point

First, floating point is satisfactory when it is used for its inten-
ded purpose, which is scientific and engineering calculations. In
this use, we use a mantissa (which is the numbers), and the ex-
ponent (which positions the decimal point). For example
Avogadro’s number (the number of atoms in a gram-molecular
weight of a substance) 6.0247E23 means that the decimal place is
23 places to the right of where it is shown. The number 1234
would be shown as 1.234E3. The results of calculations will be ac-
ceptable as long as the worker is aware of the number of
significant figures—multiplying 12.34 by 24.56 does not equal
303.0704! There can not be more significant figures in the result
than there is in the factor with the least number of significant
figures. The above result has to be limited to four figures, which is
303.0 or 303.1, depending on whether you truncate or round.

In scientific work, the numbers 100, 100.0, and 100.00 do not
necessarily mean the the same amount because they contain dif-
ferent numbers of significant figures. 100 means that the amount
is at least 99.5, but less than 100.5. 100.0 means that it is at least
99,95, but less that 100.05. When talking about money, we
assume that the amounts are accurate to the second decimal place,
and that’s where floating point with its rounding and limited ac-
curacy fails.

I have shelves full of programming books, but I have only been
able to find one reference to the floating point problems. What
follows is the result of reading between the lines and personal ex-

perimentation. Any information or references to books which
you can provide will be shared with our readers.

Some C implementations maintain only six digits for floating
point numbers. The amount 12345.67 would appear as
1.23456E4, or 1.23457E4 if it is rounded. In either case, you have
lost track of the pennies, and will lose track of the dimes for
amounts over $99,999.99. Other C implementations provide for
additional significant figures, which will alleviate this portion of
the problem.

C helps make the programmer’s life easier by providing for
automatic type conversion, but it also makes it easy to get into
trouble. Listing 1 was taken from Borland’s Turbo C User Guide,
and is the one reference I found to floating point problems. If you
enter the values 10 and 3, you get the answer 3.000000 instead of
the 3.333333 you expected. This is because a and b are integers
and the result of a/b is also an integer which is converted to type
float when you assign it to ratio. If you change the type of aand b
to float (and change the %d %d in scanf to %f %f), you will get
the 3.333333 you expected.

LISTING 1
/* Floating point example from Turbo C User's manual pg 162 */

#include <stdio.h>

main()
{
int a,b;
float ratio;
printf(' 'Enter two numbers: t);
scanf(''%d %d'',&a,&b);
ratio = a / b;
printf(''The ratio is %f \n'',ratio);
}

One of the biggest, and most insidious, problems is that the
values printed out do not necessarily agree with what the com-
puter has stored in memory. The program in Listing 2 gets two
figures from the user, displays the numbers rounded to two places
(as they would be for dollars and cents), and displays the sum
rounded to two places. If you enter the numbers 3.456 and 4.566,
it displays, ‘“3.46 plus 4.57 equals 8.02’’—but the correct answer
is 8.03. The error is because a and b are rounded by printf for
display, but the numbers as entered are retained in memory and
then rounded after being added. Borland’s Turbo C was used for
all the examples in this article, and there are options to truncate
instead of rounding (I left it set for rounding).

This article was inspired by material provided by Don Killen,
president of Greenleaf Software, with their Business MathLib.

The Computer Journal/ Issue #38

LISTING 2
/% A program to check rounding of floating point numbers for
business math ¥/

#include <stdio.h>
float a,b,c;

main()
{ .
printf(''Enter two numbers: ey,
scanf(''%f %f'',%a,&b);
c=a+b;
printf(''%5.2f plus %5.2f equals %5.2f\n'',a,b,c);

BCD Math

A possible alternative to floating point would be to use Binary
Coded Decimal (BCD) math. Internally, BCD looks like a
sequence of four bit ‘“‘nibbles’’ because you can represent the
digits 0 to 9 with just four bits. There would be a structure or
header of some sort that indicated things like sign, location of the
decimal point, and possibly the exponent (although that is mainly
used for scientific and engineering applications).

BCD would be more suitable than floating point for financial
calculations since numbers can be represented exactly. But, the
only BCD C functions that I am aware of were for the BDS
CP/M compiler. At one time Borland provided a BCD version of
Turbo Pascal, but as far as I know it is not available for the
current release.

If I had to design my own math procedures for financial
calculations, it would be based on BCD. But, it would be a major
undertaking, and I haven’t done it because I can’t justify or spare
the time which it would require.

A Financial Math Library

Don Killen and Jared Levy from Greenleaf started working on
a BCD math library, but ended up with a number representation
‘system which they call DECimal (or just DEC). DEC numbers are
stored in a structure which contains 17 or 18 decimal digits plus a
couple of bytes indicating the position of the decimal point and
the sign. The structure is expandable to include an exponent
which is not implemented in the current version.

They wrote functions for the usual math operations such as
add, subtract, divide, and multiply, with results that are exact,
rounded or truncated only if the user requires it. This in itself will
be very valuable for C programmers who don’t want to waste time
reinventing the wheel. But, they went further, and added nearly
190 functions for things like statistics, internal rate of return,
bond prices and yield calculations, annuities, actuarial and
general business calculations, depreciation, and date calculations.
They called it ‘‘Business MathLib.”’

I’ve been working with the library for several weeks, and I can’t
think of what I could have done better. I usually find a lot of
shortcomings with most products and say, ‘‘They had a good
idea, if only they had done it right and completed the job.”’ I
can’t say that about the Business MathLib, and recommend it.
More detailed information on how it works follows, but if you
program business applications in C, order their library even if you
don’t read any further.

MathLib Knows How to Round

Business MathLib gives you a functionality that C by itself
doesn’t have—the ability to multiply (or add, subtract, etc.) and
round at the same time, to any number of decimal places you
specify (between 0 and 17). Since you round at the time of the
calculation and store the rounded number, subsequent operations
on the already rounded numbers will be correct. You can also
truncate using a second set of functions if you prefer. The advan-

The Computer Journal / Issue #38

tage of this is that you can compute things the way they would be
in the real world where fractional pennies do not exist.

DEC Number System
The DEC number system is implemented by the structure
shown below:

typedef struet {
int attr:
int id;
unsigned s1{4];
short msd;

} IDEC;

typedef struct {
int lattr;
int 1i4d;
unsigned long 1s[2];
short 1lmsd;
} LDEC;

typedef union {
IDEC dc;
LDEC 1s;

} DEC;

The DEC Structure is actually a union in which the least
significant 64 bits of the mantissa can be treated either as four
short unsigned integers or two long unsigned integers. In either
case, a short signed integer (msd, Imsd) provides the most
significant bits. The sign of the DEC number is found in one of
the bits in the attr, lattr word. The id, lid word holds a number
which indicates the position of the decimal place relative to the

XED4/5/8 Integrated Editor Cross-Assembler

XED4/5/8 is a fast and convenient method to develop and

debug small to medium size programs. For use on Z80

machines running Z-system or CP/M. Companion

XDIS4/5/8 disassembler also available.

Targets: 8021, 8022, 8041, 8042, 8044, 8048, 8051, 8052.
8080, 280, HD64180, and NS455 TMP,

Documentation: 100 page manual.

Features include:

* Memory resident text (to about 40 KB) for very fast

execution. Recognises Z-system’s DIR: DU:. Program

re-entry with text intact after exit.

* Built in mnemonic symbols for all 8044,51,52 SFR and

bit registers, NS455 TMP video registers and HD64180 [/O

ports.

* Output to disk in straight binary format. Provision to

convert into Intel Hex file. Listing to video or printer. A sorted

symbol table with value, location, all references to each

symbol.

* Supports most algebraic, logic, unary, and relational

operators. Eight levels of conditional assembly. Labels to 31

significant characters.

* A versatile built in line editor makes editing of individual

lines, inserting, deleting text a breeze. Fast search for labels

or strings. 20 function keys are user configurable.

* Text files are loaded, appended, or written to disk in whole

or part, any time, any file name. Switchable format to suit

most other editors.

* The assembler may be invoked during editing. Error

correction on the fly during assembly, with detailed error and

warning messages displayed.

For further information, contact:

PALMTECH

(a division of Palm Mechanical)

Phone: 6177 463-109 Fax: 6177 463-198

cnr. Moonah & Wills Sts.
BOULIA, QLD. 4829
AUSTRALIA

rightmost digit of the mantissa. Normally, results are 64 bits; in
many internal calculations 80 bits are calculated to assure a
minimum of 64 bits accuracy in the result.

Pointers to DEC Used

DEC numbers are accessed and referred to by pointers. Fun-
ctions are provided which allocate a DEC or an array of DEC’s
and return a pointer to the object. All functions in the library take
pointers to DEC structures (some take other arguments as well),
and most all return a pointer to the resulting DEC number. For
example, the addition function settingc = a + b has the form:

p = AddDecimal(c, a, b);

where a,b,c, and p are all pointers to DEC. If the addition is suc-

- cessful, the destination pointer ¢ is returned. If an overflow or

~ other error should occur, a null pointer is returned, and a global

error handler indicates (a) the type of error and (b) the identity of
the function that indicated the error.

Conversions

The library provides an extensive set of functions to convert
from all C types to DEC and back. Some examples are: ASCII to
DEC, ASCII to DEC rounded, DEC to ASCII, DEC to ASCII
with commas, DEC to ASCII with commas rounded, DEC to
ASCII rounded, DEC to Scientific Notation—there are many
more. String formatting includes many options such as the ability
to surround negative values with parentheses, fill with leading
zeros or dollar signs, etc. For example, to convert a string con-
taining a number to a DEC number, the call is:

a = ConvAsciiToDecimal(a, ''1234.56'');

where a is a DEC pointer. The return is null if a conversion error
or warning (in case unspecified rounding had to be performed)
occurred.

Output

The function for printed output is called PrintDecimal(). It is
rather like the familiar printf() except that it knows about DEC
(pointer) arguments in addition to all the normal C types. It has
* many formatting options that are designed to enhance financial
and accounting applications. Additionally, it has features which
can be linked to other Greenleaf libraries to provide further
synergistic effects such as printing negative numbers in different
video attributes from positive or zero values. The form of this call
is:

i = StringPrintDecimal(fmt [,arg]);

MathLib Example

The program in Listing 3 is an example of how MathLib can be
used to avoid the floating point errors which were encountered
with the program in Listing 2. MathLib gives you several choices
of when you want to round a number. In this example I used
dscanf(), and specified two places with rounding. This way I
rounded the numbers on entry, but I could have accepted the
numbers as entered and rounded them later with a different fun-
ction. Now, when you enter the numbers 3.456 and 4.566 you get
““3.46 + 4.57 = 8.03”’ which is the correct answer.

LISTING 3

/% Example program using MathLib */

#include <stdio.h>
#include ''gm.h''

main()
DEC da, *a=&da, db, *b=&db, dc, ¥c=&dc;
ZeroDecimal(a);
ZeroDecimal(b);

ZeroDecimal(c);

printf(''This program adds two rounded decimal numbers\n'');

printf(''Enter the first number: \n'');
dscanf(''%.2Rt'', a);
printf(''Enter the second number: \n'');

dscanf(''%.2Rt'', b);
AddDecimal(c, a, b);

dprintf(''The sum of %t + %t = %t'', &, b, ¢);

Summary

Business MathLib would be worth the price if it only offered
the four standard math operations with rounding—but it includes
much more. Some of the functions (in addition to the rounding,
truncation, I/0, and conversion), are: Transcendental (log, trig,
power, root, etc.); Test (is DEC positive/negative/equal, etc.);
Advanced Business (add/subtract percent, percent change, sim-
ple/compound interest, advance payment, loan amortization,
discounted cash flow analysis, annuities, bond calculations,
depreciation, date manipulation, etc.); Statistics; Linear
Estimation.

MathLib works with Greenleaf’s DataWindows, SuperFun-
ctions, DataMath, CommLib, and Greenleaf Functions to make a
comprehensive business programming package—I’'ll be looking
forward to adding these libraries. The only functions missing are
file handling and indexing with file and record locking. Perhaps
I’ll use the Greenleaf libraries with Raima’s dB__VISTA, which
provides the missing functions.

Watch for more articles on the Greenleaf products—I’m im-
pressed by their quality and completeness, and don’t hesitate to
recommend them. Our primary focus will be on defining and
solving applications using the tools. Necessary code examples will
be included, but the emphasis will be on applications rather than
arcane code examples which have little practical use. Borland’s
Turbo C V2.0 will be used, but the code will be as portable as
possible.

The Greenleaf Business MathLib supports Microsoft C v5.0
and 5.1, Lattice C v3.2 and 3.3, and Turbo C v1.5 and 2.0. It is
available from most dealers or direct from Greenleaf Software at
16479 Dallas Parkway, Suite 570, Dallas, TX, 75248. Phone 1-
800-523-9830 or, from Texas or Alaska, (214)248-2561. The
package lists for $325. B

The Computer Journal/ Issue #38

Advanced CP/M

Batch Processing and a New ZEX

by Bridger Mitchell

More Environmental Programming

Two columns ago [went out on a limb and suggested a number
of guidelines for environmentally-sensitive programming—how
to write programs that were aware of their host computer’s en-
vironment, took care to avoid damaging the system, and allowed
you to exploit advanced features if they were supported. A num-
ber of you have continued the discussion by mail and on the Z-
Nodes. There are several areas for further fruitful exploration. I’ll
touch on one or two this time, and I imagine we can look forward
to further exchanges.

Lee Hart asks if there are ways to detect other CPU’s (in ad-
dition to the HD64180/Z180 and Z280) that support the Z80 in-
struction set, including the Ferranti, SGS and NEC chips. It
would be useful for some programs to know, for example, that
they are running on a PC. If you can shed some light on this,
please do!

Preserving the Z80 Registers

I (and others) have argued that an environmentally-conscious
BIOS will preserve any non-8080 registers that it uses, and restore
their values before returning from any BIOS call. Al Hawley and
other CP/M veterans recalled that Zilog’s early data sheets for the
780 suggested using the alternate registers to switch contexts in
‘servicing an interrupt.

In an embedded application, using the alternate registers in a
service routine is entirely appropriate and efficient, because the
designer knows exactly what tasks will use which registers. But it’s
another matter altogether to use the registers (without preserving
them) in an operating system, which is intended to run an ar-
bitrary task that may very well itself actively use the same
registers.

Unfortunately, several BIOSes were written along the Zilog
guidelines, and some authors used the register-swap instructions
to save a few bytes. As a result, erratic bugs continue to pop up.
Recently, a few users have encountered them when installing
ZSDOS, which itself preserves and uses the index registers.

Cam Cotrill has come up with a portable *‘fix’” for part of this
defect. It takes the form of a special NZ-COM BIOS segment that
saves all of the Z80 registers before every BIOS call and then
restores them just before returning. Because NZ-COM allows the
user to load a customized BIOS module—in addition to com-
mand-processor, named-directory, and other segments—and to
adjust its size, it is possible to provide such a band-aid without
knowing anything about the hardware features of the BIOS itself!
You can find this file in ZSNZBI12.LBR on one of the major Z-
Nodes.

As ingenious as this solution is, it would be better still if it were
unneeded. And while it handles the BIOS that consumes registers
in normal services, it cannot rectify the BIOS service routine that
consumes a register for handling interrupts. If you’re writing a
new BIOS, or have the source to your existing system, take care to
preserve the index and alternate registers!

The Computer Journal / Issue #38

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s
the author of the widely used DateStamper (an automatic, por-
table file time stamping system for CP/M 2.2); Backgrounder
(for Kaypros); BackGrounder ii, a windowing task-switching
system for Z80 CP/M 2.2 systems; JetFind, a high-speed string-
search utility; DosDisk, an MS-DOS disk emulator that lets
CP/M systems use pc disks without file copying; and most recen-
tly Z3PLUS, the ZCPR version 3.4 system for CP/M Plus com-
puters.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

Interrupts

How should the environmentally-conscious programmer deal
with interrupts? First, a portable program can’t use Z80 or
8080/8085 interrupts, because it can’t readily determine the
availability of interrupt vectors for its own use, and the possible
conflicts that could exist with other interrupts used by the system.
Therefore, programming interrupt-service routines falls in the
province of writing hardware-specific BIOS extensions.

“Programming interrupt-service
routines falls in the province of writing
hardware-specific BIOS extensions.”

The relevant general-purpose guidelines must be limited to
procedures for disabling and enabling interrupts. It’s rarely
necessary to turn off interrupts, and the rule is: keep it short! In-
terrupts must be disabled whenever your code leaves the system in
a state in which an arbitrary interrupt-service routine cannot
execute correctly. Keep the stack pointer and system addresses
clearly in mind.

Why would you ever use SP for anything but a stack, anyway?
Well, it’s sometimes a handy way to load a table of word into
registers. Repeatedly pushing a constant can be the fastest method
of initializing a segment of memory. And several issues ago I
described a code-relocation algorithm that used a similar trick to
fetch, relocate, and store successive words of code in PRL for-
mat.

Interrupts should be disabled (with a DI instruction) just before
changing the stack pointer to use it for data operations, and re-
enabled (EI) as the instruction that immediately follows restoring
the stack pointer to a valid stack. If you don’t turn off interrupts,
and an interrupt occurs, then when the CPU catches the interrupt
it will push the current program counter value onto your *‘stack”’,
clobbering part of your data area.

In some applications it’s necessary to change the BIOS or page
0 vectors. It’s remotely possible that an interrupt service routine
would use one of these vectors (but only if the BIOS is re-entrant).
So, a fastidious guideline would use a DI before any multi-
instruction code that changes a vector.

This code:

1d (vector_address),de

is atomic—it changes everything necessary in a single executable
instruction, one that cannot itself be interrupted. However, using
several instructions to storing the low and high bytes of the ad-
dress, for example:

1d hl,vector_address
di

14 (h1),e

ine hl

1d (h1),d

ei

is not atomic. While that sequence of instructions is executing, the
state of the system BIOS vector is not well defined. Without the
DI instruction, if an interrupt occurs, its service routine could get
an invalid address.

I have used the DI/EI instructions without apparent problems.
But when I wrote BackGrounder ii I wanted to ensure wide por-
tability, and I worried about a BIOS that did not use interrupts
and might behave strangely if they were suddenly enabled. This
might seem paranoid, and it’s probably the case that a number of
other programs would not run on such a system. But I was
recalling an early experience of trying to boot an 8085-based S-100
Compupro system in which the interrupt lines had been left
floating. When the first EI was executed in the cold- boot code,
one of the devices triggered an interrupt, before the BIOS’s ser-
vice routine had been installed.

The routines in Figure 1 can be called in place of inline DI and
EI instructions to disable interrupts and conditionally re-enable
them. As far as I have been able to determine, this test of the
Z80’s interrupt status works correctly. However, I have heard
reports that some ‘“Z80’’ CPUs do not report this status correc-
tly. I would welcome any reliable information on this point.

Figure 1. Disable and Re-enable Interrupts
H
; Save interrupt status and disable interrupts

’
disable_int:

push af ; save registers

push be

1d a,i ; get interrupt status to A
push af

pop be ; and into C

1d a,c ; and save it

1d (intflag),a

pop be

pop af

di ; disable non-maskable interrupts
ret

H
; If interrupts were previously enabled,
; re-enable them.

H

enable_int:
push af ; save register
1d a, (intflag) ; if interrupts
bit 2,8 ; .. were previously enabled
Jjr z,1$
el ; ..re-enable them
1$: pop af
ret

Batch Processing

Batch processing is running a sequence of commands by sub-
mitting a single command to the operating system. In the good
old days, the computer operator submitted programs, on 80-
column punched cards, to a desk-sized card reader. Programs
were batched together by stacking the card decks in a long metal
tray. You (or the operator) lugged the tray across the room,
crossing your fingers that you didn’t trip and spill everything on
the floor. Eventually, your job ran and after a seemingly endless
wait, the printer disgorged interminable pages of digits, and you
went back to debugging yet another core dump. Then the cycle
repeated. . .

CP/M’s standard batch processor is the SUBMIT utility. It
takes a file of command lines, stored in a file of type SUB, and
writes them to a temporary file. The command processor detects
this file and gets its commands from it, a line at a time, until it has
completed the batch. Then it once again gets its commands from
the keyboard.

A submit file, or script, called TEST.SUB might look like this:

emdl command_taill
cmd?
cmd3 command_tail3

Your command
SUBMIT TEST

would then cause the three commands to run in sequence.

This basic system works well for programs that require only
command-line parameters for their input. But when a program,
say CMDI1.COM, needs console input, the process stops in its
tracks and waits for the user to type in the input. Many times this
is just what you want to occur—the user needs to make a real-time
decision, and enter data or a response. Often, however, we want
the program input to also be automated, so that it can be
provided from the same script, and the entire batch of jobs will
run to completion unattended.

Digital Research, the authors of CP/M, attempted to provide
this capability with the XSUB utility. But it was an early attempt
to write an RSX (resident system extension), it was buggy, and it
proved incompatible with any other RSX.

A major step forward was the development of utilities that
combined SUBMIT and XSUB processing, kept the script in
memory inside the RSX for faster performance, and supplied a
line editor so that short scripts could be typed in on-the-fly when
needed. EX.COM was one. Another was the In Memory Submit
capability included in Morrow computers which stored the script
in banked memory on their CP/M computers.

ZEX

For the Z-System the batch processor has been ZEX—the Z-
System EXecutive input processor. It evolved from EX, and has
grown like topsy, with significant contributions from Rick Conn,
Joe Wright, Jay Sage and others. These increasingly elaborate
versions provided for greater control over input, the ability to
print messages while the script was running, simple looping,
testing of command flow control, etc.

Yet ZEX never quite seemed housebroken, and the tireless Rick
Charnes was always coming up with some new batch process that
he couldn’t quite get ZEX to perform. Moreover, there was no
ZEX for Z3PLUS systems. And the hieroglyphics required to
write a ZEX script always required relearning just when you
needed a quick, automated process.

These warts, and conversations with Joe Wright and Jay Sage,
the most recent revisors of ZEX, finally led me to take a fun-
damental look at this utility. Although the code contained many
notable advances, this was truly a ‘‘topsy’’ program, something
that had been bandaged and remodeled many times. So, in
discussions with Jay, I decided that we need to rethink our objec-

The Computer Journal/ Issue #38

tives and design the program from the outside in. This issue’s
column focuses on that design, leaving its implementation for
another time.

What Should ZEX Be?

The easy part was how it should run. The new ZEX should run
on both CP/M 2.2 and CP/M Plus systems. It should be com-
patible with existing RSX’s. It should be able to load and use

- RSX’s as part of a script. And, perhaps, it should be able to in-
voke a second ZEX script.

These requirements would give us a single batch processor for
all Z-Systems, and scripts that could be used on both CF/M 2.2
and CP/M Plus machines without change. A script could be
executed while an RSX, such as BackGrounder ii or DosDisk, is
already in memory. If needed, the script could load an RSX, for
_example one to filter printer output.

Preliminary goals for the script language seemed straightfor-
ward. The language should allow a standard SUBMIT script to
run identically. It should use English-like directives, provide con-
venient, easily readable comments, and clearly distinguish bet-
ween input for the command processor, input for programs, and
messages and directives. Programs should run identically when
the same commands appear in a script, or are typed in at the con-
sole.

This is starting to sound like the textbook-prescribed top-down
design exercise. As any real programmer knows, that would be a
fairy tale, because it seems that all of us just have fo write some
code, if only to check out an idea.

Well, writing code before the design is completed can indeed be
productive—the key thing is to avoid getting enmeshed in the
thicket of small details before the major skeleton of the project,
and possible alternatives, have been sketched and evaluated. So,
while drafting and redrafting these preliminary specifications, I
also found myself experimenting experimenting with the parsing
code, rewriting, modularizing and consolidating several existing
ZEX versions, and developing and testing the CP/M Plus inter-
face.

What follows, then, is a still-in-process description of the
evolving new ZEX, version 4.0. Your comments and suggestions

"will be welcome and will surely improve it. [expect ZEX to con-
tinue to evolve—it will be easier to add features to the code now
that it is more modular. What will require effort is the systematic
thought and testing of extensions to the language, to avoid unin-
tended side effects and anomalous cases.

The ZEX Script

ZEX is the Z-System batch-processing language. ZEX.COM is
the system tool that implements it. Its purpose is to automate
complex and repetitive tasks that require running a series of
programs or entering keyboard input.

A ZEX script is a text (ASCII) file, or series of text lines entered
interactively when ZEX is run. The script file is conventionally
given the filetype .ZEX, or sometimes .SUB, for convenience in
identifying scripts in a directory.

A script typically consists of a series of commands and their
command-tails that form the input to the ZCPR command
processor. In this form the script is equivalent to a CP/M SUB-
MIT script. In addition, the script may contain data for programs
that would otherwise be entered from the console keyboard. This
feature is similar to, but more advanced than, the CP/M XSUB.

In addition, the ZEX script may contain a number of ZEX
directives that provide for console messages, waiting for a
keypress, ringing the bell, testing command flow control, and so
forth.,

ZEX explicitly distinguishes between command-processor input
and program input. Normally, ZEX gets all command-line input
from the script and all program input from the console. (This is
exactly what SUBMIT does; a SUBMIT script will run identically

The Computer Journal / Issue #38

under ZEX.) But the input sources can be switched by directives.
For example, all program input can also be obtained from the
script, so that the complete script will run unattended from start
to finish.

In reading this, keep clearly in mind the difference between a
script file, typed input, and console output. A file is a stream of
bytes, broken into lines by a pair of bytes: <CR> followed by
<LF>. Similarly, when a line of text is output to the screen, it en-
ds with a <CR> (which moves the cursor to the first column of
the current line), and a <LF> (which moves it down one line).
However, when a line is entered from the keyboard it is ter-
minated by a <CR> only. Thus, in a script you should designate
the end of a line of program input with a |[CR|. For a multi-line
message to the screen, terminate each message line with [CRLF|.

The ZEX Language

The ZEX script consists of lines of ASCII text, each terminated
by a <CR><LF> pair. (Create the script with a text editor in
ASCII (non-document) mode, or just type it into ZEX when
prompted.) A number of reserved words, called directives, con-
trol the various features. Each directive begins and ends with the
verticule character ‘|’. The directives may be entered in upper,
lower, or mixed case; we use uppercase here to make them stand
out. All script input that is to be sent to a program begins with a
¢<’ character in the first column; all other lines are sent to the
command processor or, when specifically directed, are messages
sent directly to the console output.

Command-processor input:

¢ is any line of the script that doesn’t begin with ‘<’.

® is case-independent.

» spaces and tabs at the beginning of a line are ignored.

o is <CR> <LF> sensitive. The end of a script line is the end of
one command line. Use the |JOIN| directive at the end of a script
line to continue the same command line on a second script line.
(The <LF> is always discarded).

¢ use “[NUL| ”” or |SPACE]| to insert a space preceding a
command, or after a command and before a comment.

® begin each command (or set of multiple commands,
separated by semicolons) on a new script line, optionally preceded
or followed by whitespace.

o all whitespace immediately preceding a |JOIN|, and all
characters on the line following |JOIN]| are discarded.

Program Input:

¢ is normally obtained from the console.

® begin each line of program input with a ‘<’ in the first
column.

® input is case-sensitive.

¢ data from the script ignores the <CR> <LF> at the end of a
script line. A single line of program input may spread over several
script lines.

e use |CR| to supply a carriage-return.

e use |LF| for linefeed and |CRLF| for carriage-return-
linefeed.

o if the program requests more input than is supplied in the
script, the remaining input is obtained from the console.

¢ use |[WATCHFOR string| to take further input from the con-
sole, until the program sends ‘‘string’’ to the console output, then
resume input from the script.

Both:

* use [SAY| to begin text to be printed on the console.

¢ use |END SAY] to terminate that text.

¢ use |UNTIL 7| to take further input from the console, until a
keyboard ~ is entered. The ‘™’ character may be any character;
pick one that won’t be needed in entering console input.

e use |UNTIL| to take further input from the console, until a
keyboard <CR> is entered.

Comments

A double semicolon ‘‘;;’’ designates the beginning of a com-
ment. The two semicolons, any immediately-preceding
whitespace, and all text up to the end of that line of script are
ignored.

A left brace ‘{’ in the first column designates the beginning of a
comment field; all text, on any number of lines, is ignored up to
the first right brace ¢}°.

Other Directives
~ Within a directive, a SPACE character is optional. Thus, [IF
TRUE]| and |IFTRUE| have the identical effect.

|IF TRUE|-begin conditional seript; do if command flow
state 1s true.
|END IF|-end conditional script.

|IF FALSE|-begin conditional script; do if command flow
state is false.

|RING|-ring console bvll.

|WAIT|-wait until a <CR> is pressed.
|AGAIN|-repeat the entire ZEX script.
|ABORT|-terminate the script if the flow state is true.
|QUIET ON|-turn on the ZCPR quiet flag.

|QUIET OFF|-turn off the ZCPR quiet flag.

|CCPCMD ON|-turn on ZCPR (CCP) command prompt.
|CCPCMD OFF|-turn off ZCPR (CCP) command prompt.
|ZEXCMD ON|~turn on ZEX commend prompt.

|ZEXCMD OFF|-turn off ZEX command prompt.

|NUL|-use to make following whitespace significant.
||-same as |NUL|

|SPACE|-one space character.

Parameters

ZEX (like SUBMIT) provides for formal parameters
designated $0 $1 ... $9. When ZEX is started with a command
line such as:

A> ZEX SCRIPT1 ARGl ARG2 ARG3

then ZEX reads and compiles the SCRIPT1.ZEX file. In the
script, any “‘$0°° will be replaced by ‘“SCRIPT1”’, any *‘$1” is
replaced by the *“first’’ argument ‘““ARG1”’, etc.

The script may define ‘‘default parameters’ for the values $1

... $9. To do so, enter the three characters “~$n’’ followed (with
no space) by the nth default parameter. When ZEX encounters a
formal parameter in the script, it substitutes the command-line
parameter, if there was one on the command line, and otherwise
the corresponding default parameter, if it was defined.

Alternatively, you can define default parameters by entering
“|n=param|”’, where ‘n’ is ‘1’ to ‘9’ and ‘‘param’’ is the default
string (containing no whitespace).

Control Characters

You enter a control character into the script by entering a caret
‘A’ followed by the control-character letter/symbol. For exam-
ple, “~A” will enter a Control-A (01 hex). Control- characters
may be entered in upper or lower case.

Quotation

ZEX uses a number of characters in special ways: dollar-sign,
caret, verticule, left and right curly braces, less-than sign,
semicolon, (space, and carriage-return). Sometimes we might
want to include these characters as ordinary input, or as output in
a screen message. For this, ZEX uses ‘$’ as the quotation charac-
ter. (This is also called the escape character, because it allows one
to escape from the meaning reserved for a special character.)
“Quotation’’ means that the next character is to be taken
literally; I use this term to avoid confusion with the control code
1B hex generated by the escape key.

If ‘$’ is followed by any character other than the digits from ‘0’
to ‘9, that character is taken literally. Thus, if we want a caret in
the text and not a control character, we use ‘$*’. If we want a ‘<’
in the first column of a line that is for the command processor and
not for program input, then we use ‘$<’ there instead. And don’t
forget that if we want a ‘$’ in our script, we must use ‘$$’. There
are some cases, like ‘$a’, where the ‘$’ is not necessary, but it can
always be used. To pass a ZEX directive to a program, or the
command processor, use the quotation character with the ver-
ticule. For example, to echo the string “‘|RING|”’, the zex script
should be:

echo $|RINGS|

Some Examples

Figure 2 provides several examples of how the new script
language should work. You will note a number of differences
from the current dialect used, for example, in Rick Charnes’ ar-
ticle in this issue. And, no doubt, further improvements will
emerge from your suggestions and the actual implementation of
the new batch processor.

If You Don’t Contribute Anything....

....Then Don’t Expect Anything

10

TCJ is User Supported

The Computer Journal / Issue #38

Figure 2. ZEX Script Examples

——

ZEX SCRIPT

emdl ; ;comment

cmd2 |UNTIL|

|SAY|cep msg|ENDSAY|emd3

<text
<more text|CR|
<new line of text

cmd4 cmd4tail
<|UNTIL"|
<text

emd5 JUNTIL™| tail

|[UNTIL|

{UNTIL|
<|SAY|message|ENDSAY|
<text

cmd6
<|WATCHFORstring|
<|SAY|message|ENDSAY|
<text

aliasl

<|UNTIL™|
<cmd2text

cmd3
<text

INPUT SOURCE/EXECUTION SEQUENCE

The CCP receives ''cmdl<cr>''. The spaces before
the comment are stripped, and the <er> at the
end of the line is passed to the CCP.

The emdl program gets its input from the console.

The CCP recelves ''emd2 '' and then gets additional
input from the console, including a <cr>.
The cmd2 program gets 1ts input from the console.

When the CCP prompts for the next command,

''ccp msg'' is printed on the console. The CCP
then receives ''cmd3<cr> '’

The cmd3 program gets ''textmore text<cr>new
line of text'’

If the program requests more input, it comes from
the console.

The CCP receives ''emd4 cmd4tail<er>'!

The cmd4 program receives console input until
the user types a '~ '. Then the program receives
! 'text’ 1

If the program requests more input, it comes

from the console. If the program doesn't use all
of the input, it 1is discarded.

The CCP receives ''cmd5 '' and then gets additional
input from the console, until the user types '~'.
The CCP then receives '' tail<er>'',

The program receives input from the console.

The CCP receives a command line of input from the console.
The program receives input from the console.

The CCP receives a command line of input from the console.

When the program first calls for console input,
''message'' 1s printed on the console. Then the

program receives ''text''.

Additional program input 1s received from the console.

The CCP gets ''cmd6<cr>'!

The cmd6 progrem gets input from the console, until
the characters ''string'' appear at the conscle output.
Then ''message'' appears on the console output, and
the program gets ''text''. Further input comes

from the console.
If ''string'' never appears, all of this is
discarded.

The CCP gets ''aliasi<cr>''. That program, a Z-System
alias, puts ''emdl;cemd2'' into the multiple

command line buffer. The CCP then obtains ''emdl'' from mcl

The cmdl program gets any input from the

console. If a '~' is typed, it gets ''cmd2text''.
If emdl does not request console input, or if

no '"' is typed, cmdl finishes and the CCP then
obtains ''emd?2'' from mcl. Assume this case.

The cmd? program obtains input from the

console, until a '"' is typed. Then it gets

''emd2text''. Further input comes from the console
The CCP gets ''cmd3<cr>''.
The cmd3 program gets ''text''. Further input

comes from the console.

@obbyists, Experimenters, R&D Groups1

8031 uController Module

Our 8031 pController Module forms the core
of a complete prototype and saves hours of
hand wiring.

We include a prototype quality pc board popu-
lated with an 8031 microprocessor, crystal,
7418373 Addrees Latch, capacitors, commu-
nications and I/0 headers and a 2764 EPROM
with diagnostic software. The module also con-
tains a socket for a MAX232 level converter to
provide an industry accepted serial communi-
cations port if your application requires it.

Documentation is provided and includes pro-
gramming examples.

$39.95 plus $3.00 S&H per module
Illinois Residents add 6.25% Sales Tax

Cottage Resources
Suite 3-672B, 1405 Stevenson Drive
Springfield, Illinois 62703
(217) 529-7679

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Apple 11, 11+, Ilc, Ile, Lisa, Macin-
tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-
per, BackGrounder ii, DosDisk; Plu*Per-
fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase II, dBase III,
dBase III Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.
IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc-
currence.

The Computer Journal / Issue #38

1

Plu*Perfect Systems == World-Class Software

BaCKGIOUNAET fi coeeeeeeeciiieeeiieeeiicisieessissnescessecssssemssssssnssssrnnsssannsnsssnanssnnnen $75

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order 23PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

A1 010 1 3 $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

(970 X=Y 011 7S $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY ...t s s s s s n s s s sm s mmnes $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Iincludes DosDisk. Requires Kaypro w/TurboRom.

B 1=3 4 1 2 (o $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
fo file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. ' 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

C Pointers, Arrays and Structures Made Easier

Part 2: C Arrays
by Clem Pepper

At the end of the previous segment on pointers we observed the
declarations:

char *name = ''Jane'’;
and
char name[] = ''Jane'’;

to be one and the same. You might like to test this using your
screen clear function.

Although we don’t recognize it as such, a string is actually an
array in the sense that its characters occupy sequential locations in
memory. To fully appreciate this duality requires an understan-
ding of array principles as employed in C.

Defining the C Array

We use the array when our need is to organize a quantity of our
program’s data as to make specific data elements readily
retrievable. In essence the array is simply a definition for data
storage. In the absence of any other direction this storage is in
contiguous memory. We might visualize memory as a long line of
numbered shoeboxes into which the data is packed. Data, like
shoes, requires a variety of sizes. Instead of 11D or 8A data is
sized as char, int, float, long and so forth. For most computers a
- char is a single byte or eight bits. The int is 16 bits, long or float
32. These are fixed for any given system. We can see then why
type declarations are essential to the expected execution of our
programs.

An array declaration is recognized by the braces following the
name: me_array[n];. The n’’ is the array’s size or dimension.
That is, the number of elements contained in the array. We may
refer to ‘‘n”’ as the array index or subscript. In fact, array num-
bering is very similar to matrix or determinant subscripting in
mathematics. We often see declarations where the brackets are
empty. Whether a value is required depends on how the array is
initialized.

Hopefully we are familiar with C’s storage classes. Variables
declared within a function are known only within that function. If
the variable is needed in another function a copy is made and
passed in the function call. This is known as passing by value. The
original value of the variable cannot be modified by the called
function. This only applies to variables declared within a fun-
ction. Global variables are those declared outside a function.
Their value is known throughout the program.

The array is an exception to this privacy feature. The array’s
address is passed when the information it holds is required in a
called function. Thus it is possible for the returned value to differ
from the original. (Recall the pointer passing in PTR-EX4,
Listing 4 which appeared in TCJ #37.)

The array variable can be any type: int, char, float, long,
double, etc. But only one type for a given array.

Arrays can have more than a single dimension. A two dimen-
sional array could be declared

me_2_dim arr[1]1[}]1;

The Computer Journal / Issue #38

And so on. Note the absence of punctuation between the two
brackets.

The Integer Array
When we declare a single variable such as:

int my_age = 22;

the compiler assigns 16 bits somewhere for my__age. Depending
on the kind of storage assigned, these 16 bits may be in memory,
the stack, or a register.

Now suppose we would like to declare a list of ages for our
friends. Joe is 23, Jim 19, Sue 21, Anne 22 for instance. For this
we could take advantage of the array and declare:

int frnds_age[4];

The compiler will now reserve memory for four integer values.
The array has a name: frnds_age. The name is actually assigned
to the first entry in the array, frnds_age[0]. It is important to
note that the first entry in the array is [0]. Which makes the fourth
to be [3].

Now that we have declared our array it is necessary to enter its
data. Data is saved in an array in the order in which it is entered.
The simplest, most direct method is to enter the data with the
declaration. Then the declaration will look like:

int frnds_age[4] = { 23,19,21,22 }; /* { }'s required ¥/
We cannot use the declarations
int Joe = 23, Jim = 19, Sue = 21, Anne = 22;

as array variables even though they are what we have in mind as
they do not relate to the array name. Instead:

int Joe = frnds_ege[0], Jim = frnds_age[l], Sue = frnds_age[2];
int Anne = frnds_age[3];

Suppose we write a program based on these values.

int my_age = 22;
int frnds_age[4) = { 23,19,21,22 };
int Anne = frnds_age[3];

Issue #37 Corrections
The typesetting gremlins struck several times in part one.
First, I lost the closing double quote in the second line of code
in the right hand column of page 4. It should read as follows:

if{entry != 510) printf(''Sorry 'bout that!'');

My typesetting program automatically toggles between opening
and closing quotes, and the missing quote caused all the following
quotes in the text to be wrong.

I had to reduce the number of spaces for the indenting in order
to shorten the line lengths to fit the column width. In some cases |
lost track of the indenting level, which makes it difficult to match
the start and finish.

13

printf(' My age is %d.\n'',my_age);

printf(''My friends and their ages are:\n''); Listmg 6

printf(''Joe, who 1s %d; Anne, %d; Sue, %d; and Jim, %d.\n'', \

frnds_age[0], frnds_age[3],frnds_age[1],frnds_age(2]); /¥ARR_EX1.,0 =-re—mmmmccmccmmeeen *%
printf{' My favorite friend is Anne who is %d.\n'’,Anne); ** Internally entered data array */

: . . . #include <stdio.h>
We can list the elements in any desired sequence. Notice how #define CLRSCRN ''\@33[2J'' /% MS DOS ANSI screen clear */

we have declared Anne an integer equal to her age from the array /% == Begin program == %/

"element. The complete program is given in Listing 6 (Note: In or- main()
der to avoid confusion when referring to previous listings, the {
listing numbers continue from issue #37). int my_age = 22;
When compiled and run we will see on our screen: int frods_age[4]) = { 23,19,21,22 };
int Anne = frnds_age[3];
My age is 22. puts(CLRSCRN) ;
My friends and their ages are: printf(''My age is %d.\n'',my_age);
Joe, who is 23; Anne, 22; Sue, 19; and Jim, 21. printf(''My friends and their ages are:\n'');
My favorite friend is Anne who is 22. printf(''Joe, who is %d; Anne, %d; Sue, %d; and Jim, %d.\n'', \
This example illustrates data declared internally within a piigziﬁgﬁgg%éizggigaiii[iiéfx-l‘gdi;iieg;g'i:nngiie,[,z’]:n’ne);
program and stored in an array for further use. Often there is a exit(0);

need to enter data externally from the keyboard or a disk file for | }
subsequent use within the program. This is illustrated in our next
example, ARR_EX2.C (Listing 7).

The program requests the entry of six numbers from the
keyboard. Each entry is to be followed by a RETURN. The

. . , Listing 7
program will then display the entered value in the array and the el
square of the entry. Your screen will resemble the following: /% ARR_EX2.C %
Enter six numbers between 1 and 127. *¥* Fllling an integer array with Keyboard entries %/
Enter digit 1:<cr> 126 #include <stdio.n>
Enter digit 2:<cr> 75 #define CLRSCRN ''\@33[2J'' /¥ ANSI screen clear */
Enter digit 3:<or> 93 #define LF ''\n'' /% linefeed */
iy digit 2 <> 82 #define DIM 6 /% array dimension */
ter dig :<°T> int arr_i[DIM]; /* to store externally generated data */
Enter digit 5:<ecr> 53 int *parr; /% pointer to array elements */
Enter digit 6:<cr> 67 /% == Begin program == */
i = 0: array[0] = 126 ?ain()
1 i é Z;;Zg%g i g; puts(CLRSCRN) ; /% clear the screen */
oL - puts(LF);
i = zi &I‘I‘ayEz% = 2; £i11_arr(); /% £i11 array and display values ¥/
= 4: array = puts(LF);
i = 5: array[5] = 67 sqr_arr_el(); /% square array content and display */
1=0and ¥ * ¥ = 15876 exit(0);
1 =1 and *1 * *i = 5625
1 =2 and *¥1 * %1 = 8649 /% == Fill array from keyboard entries == %/
1 =3 and ¥1 * *1 = 6724 £111_arr()
1 =4 and *1 * *1 = 2809 { int 1;
1 = 5 and *1 * *¥1 = 4489 printf(''Enter six numbers between 1 and 127.\n'');
. f i =0; 1 <DIM;
We see an advantage of pointer variables in their application to or ’ i)
finding the squares of the keyboard entries. It is helpful to explore printf(''Enter digit %d:<erd'1,i+1);
the squaring process as exercised in function sqr__arr__el. The scanf(''4d'", garr_i[1]);
function, taken from the listing, is: }
puts(LF);
* == == ¥
;qr ariq::z(-; array content and display on screen / for(i = @; i < DIM; ++1)
{ int 1, sqr_el; /% %% Display 1 and keyed value stored in the array *% %/
f‘c{)r(i = 0; 1 < DIM; ++i) printf(''i = %d: array[%d] = %d\n'',i,i,arr_i[1]);
parr = &arr_i[1i]; /% assign pointer to array */ }
sqr_el = *parr * ¥parr; /¥calculate element square¥/
/% %% Display 1 and the squared array element ** */ /% == Square array content and display on screen == %/
printf(''1 = %d and *1 * *1 = 4d\n'', i,sqr_el); sqx.'_arr_el()
} { int i, sqr_el;
} for(i = @; 1 < DIM; ++1)
{
As we see, the squaring and display are a looping operation parr = &arr_i[i]; /% assign pointer to array */
Each pass of the loop increments a pointer to the next array Sqr_el = *parr ¥ ¥parr; /¥ calculate i exp 2 ¥/

/% ¥% Display i and its squared value from the array ** %/

element. Because we are using pointers there is no need for direct . 6
printf(''i = %d and *1 * ¥1 = %4d\n'', i,sqr_el);

accessing of the element values. In this example we made the
global declaration }

int *parr;

14 The Computer Journal / Issue #38

Listing 8

/% ARR_EX3.C =—---mcmmmemmmmmm o *¥
** Strings and arrays have a lot in common */

#include <stdio.h>
#define CLRSCRN ''\@33[2J'' /% ANSI screen clear */

. /% === string array using characters. === %/
char ChI‘_BI‘I‘[] = { THY, 1 it l,!Yl,l\ll,l l’lll,v:ll'v\@l };
/¥ === string array using a character pointer === %/

char *ptr = '"Anything allright?'’;

/% == Begin program == %/
main()
{ int 1;
puts(CLRSCRN) ; /% clear the screen %/

/% print chr_arr[] ''Hi Y'All'' character by character */
for(i=0; 1 < 9; ++1) printf(''%c'',chr_arr[i]);

/% return cursor to left edge of the screen X/
putchar('\n');

/% print '"Anything allright?'' using putchar in a */

/% while loop. The null (\@) string terminator ends ¥/

/¥ the while. */
while(¥*ptr) putchar(¥ptr++);

/% return cursor to left edge of the screen */
putchar(‘\n');

/% replace the present string in ptr with new text */
ptr = ''Hey, ya gotta be kidding!'';

/% ... and display it. */
while(¥*ptr) putchar(¥ptr++);

exit(@);

Listing 9

/% ARR_EX4.C ———— k¥

**% Entering disk file text to an array ¥/

#include <stdio.h>

#define CLRSCRN ''\@33[2J'' /* ANSI screen clear %/
/% == Begin program == ¥/

main(num, fname)

int num;

char *fname[];

FILE *in;

char file in[88@];
int ¢h, 1 = 0;
puts(CLRSCRN) ;

if(num != 2) { printf(''A source file is required.\n''); exit(0);}
else if((in = fopen(fname[1],''rb'')) I= NULL)

while((ch = getc(in)) != EOF) /% get char from in */

file_in(i++] = ch;
}
}

felose(in);

/¥ %% Convert final char to '\@'; transfer count ¥* %/
file_in[i] = '\@';

/% %% Call subroutine for screen playback ¥* ¥/
disp_txt(file_in,1);
exit(0);
} (Continued)

The Computer Journal / Issue #38

with no assignment. The assignment takes place when required in
the loop operation. A new value is acquired on each pass. The
descriptive *1 * *i used in printf was merely to obtain a short
line length. Interpret it to mean the content of the ith array
element times itself.

The Character Array

We have touched on the character array in describing the
character pointer. Specifically, we have observed that a string
pointer and string array declaration are identical. While it will of-
ten be to our advantage to employ the string pointer there are
situations in which the array is needed. The most obvious is to
address specific characters within the string.

The character array example of Listing 8 may be somewhat
confusing at first. That is not the intent, which is to illustrate the
versatility available to us when working with character arrays and
strings.

Earlier we declared the integer array

int frnds_age[4] = { 23,19,21,22 };

The character array has a similar declaration. But where we en-
tered integer values in frnds_age we now enter characters instead.
A character in C is identified by a single quote (’) on each side.
The character array for ‘‘Hi Y’All’’ appears as the global

char chr_arr[] = {TH',"1%,' ', "Y', \te tar, t10, 010, 1\t };

We may wonder at the entry *\”’. The backslash, \, is required to
identify the ’ as an element of the array. If the \ is omitted the
compiler will declare an error. The \ is required whenever we in-
clude another backslash or a double quote also.

Because this array is simply a string in an unfamiliar form the
closing null character, ‘\0,” must be included. When the compiler
reads the ‘\0’ it knows the string is ended. Whenever we dimen-
sion a character array we must add one count for the closing null.

Another global is

char *ptr = ''Anything allright?'';

Note that this could just as easily have been declared locally.
More importantly, following the printing of its message, a charac-
ter at a time with putchar, the pointer is re-assigned to a new
string and again displayed using a similar loop.

Now let’s further expand our expertise by reading in a text file
from disk. We can then play it back for display on our screen. If
we wish, we can make changes to the text before or during the
playback.

Listing 9 describes the program. Our attention will be first
drawn to the function main. Where main in previous examples has
been followed by empty parentheses, (), we now find the
arguments num,fname. Be aware the arguments argc,argv are
typically used with main when command line arguments are to be
included. However this terminology is not mandatory (with the
compilers I have used, at least). I find num and fname more
descriptive of what they stand for.

The first argument, num (or argc), reports the number of
required entries on the command line. It is declared an integer.
The minimum number of entries is 1; our program. We increment
nunm for each filename addition.

The declaration for fname (or argv) is more complex. Note that
the declaration reads

char *fname[];

This declaration is for a pointer to the array fname{j. It can also
be written as

char *¥fname;

when we think about it.

Our objective with this program is to read a text (ASCII) file
from disk and display it on the screen. We will first store the text
in an array. We will then read the array element by element for

15

/% == Display read in text on screen == %/
disp_txt{text_in,J)

char text_in[]; /* text array *x/
int §; /% final subscript */
int 1 = 0;
vhile(J--) {
putce(text_in[i],stdout);
if(text_in[i+1] == '\r')
/% add end of line signal */
puteh('71);
i4=1; }
}
Listing 10

In Xanadu did Kubla Khan

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

So twice five miles of fertile ground
With wall and towers were girdled round.
A savage place! as holy and enchanted

As e'er beneath a waning moon was haunted
By woman wailing for her demon-lover!

the screen display. Whenever the program detects a carriage
return, ‘\r’, it will insert the tilde (™). The tilde will appear on the
screen only, it is not added to the disk file.

In this program we are introduced to a new C type, FILE. The
source of FILE is a structure found in the library #include <st-
dio.h>. A detailed explanation of FILE is beyond the scope of
this article. The declaration

FILE *in;

is a pointer to the disk file to be read in.

Continuing on with the program we find an error detection test.
As mentioned, if the program name alone is on the command
line, num will have a value of-1. The program requirement is for 2.
An error message is printed and the program exits. Listing 10
provides the opening lines from Coleridge’s poem, Xanadu, as a
file you can use with the program. To run the program with this
file type the following command line entry

ARR_EX4 XANADU

and press the Enter (RETURN) key. If XANADU is on a dif-
ferent disk drive than ARR_EX4 .EXE, say drive A, simply type

ARR_EX4 A:XANADY

Of course you can read in any text file you like. But if it exceeds
the 880 char dimension you will need to increase the array size and
re-compile the program.

The next line

else if((in = fopen(fname[1],''rb'')) != NULL)

requires some explaining. Let’s begin with the function fopen.
This call is to open the file named on the command line for
reading. The file, fname, is designated [1] because our program
is[0]. This can be confusing if we forget the first entry in an array
is always 0. rb is an instruction to read the file in the byte (8 bits)
rather than word (16 bits) size.

16

in, as has already been described, is a pointer to fname. Our
computer’s operating system attaches a unique character at the
end of a text file. This character shows the End Of File (EOF) has
been reached, so stop reading. This simplifies reading in the file
since all we have to do is to set up a while loop to terminate on the
EOF.

With the text saved in the array we are in a position to read it
back. This is done by calling another function,

disp_txt(file_in,1)

We recognize file_in as the array name. The [] is not needed, in
fact, if used it will result in an error message. The variable i con-
tains the element count.

New names are assigned in the function call but they mean the
same thing. The while begins with the final count and decrements
with each pass until the entire text has been written out to the
screen. On each pass putc writes a single character. If the char is
‘\r’ putchar sends a tilde to the screen.

The insertion is done without disturbing the array counter. We
see this in function disp_txt (text_in,J):

while(j--) {
putc(text_in[i],stdout);
if(text_in[i+1] == '\r'")
/% add end of line signal ¥/
puteh('™1);
1 += 1; 1

The if statement looks ahead one character in search of a
carriage return (’ \r’) showing the end of the line. When a ‘\r’ is
detected a tilde, ¢ ™, is written to the screen. The tilde will appear,
we’ll see it when running the re-compiled program, at the end of
each line.

This is how ZANADU appears with the tilde.

In Xanadu did Kubla Khan™

A stately pleasure dome decree:”

Where Alph, the sacred river, ran”

Through caverns measureless to man”

Down to a sunless sea.”

So twice five miles of fertile ground”
With wall and towers were girdled round.”
A savage place! as holy and enchanted”

As e'er beneath a waning moon was haunted”
By woman wailing for her demon-lover!”

If we so wished the tilde could have been inserted in the text file
and returned to the disk. That is an exercise you might wish to ex-
periment with for your own benefit.

Array Summary

In this segment we have learned the basics of the array as used
with the C language. We have looked in some detail at single in-
dex integer and character arrays with illustrative examples. We
completed our study with the analysis of a program capable of
reading a text file from disk into an array and then writing it back
to the screen. We learned that if needed, revisions can be made to
the material before or during its writing out to the screen. ll

This series continues with structures and unions in the next
issue.

The Computer Journal / Issue #38

The Z-System Corner

by Jay Sage

Jay Sage has been an avid ZCPR proponent since version 1,
and when Echelon announced its plan to set up a network of
remote access computer systems to support ZCPR3, Jay volun-
teered immediately. He has been running Z-Node #3 for nearly
five years and can be reached there electronically at 617-965-7259
(MABOS on PC-Pursuit). He can also be reached on Genie (as
JAY.SAGE), in person at 617-965-3552 (until 11:30 pm), or by
mail to 1435 Centre St., Newton, MA 02159.

Jay is best known for his ARUNZ alias processor, the ZFILER
file maintenance shell, and the latest versions 3.3 and 3.4 of ZC-
PR. He has also played an important role in the architectural
design of a number of other programs, including BGii, NZ-COM,
and Z3PLUS.

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve
problems in signal, image, and information processing.

True, February is a short month, but somehow I don’t think
that explains why the beginning of February (the due date for this
column) came quicker than usual. It is probably a good thing that

-1 have convinced several others to start contributing regular
columns to TCJ. That way, Art Carlson may be busy enough not
to notice that the deadline passed without my column. Because it
is late and because we now have quite a few prolific writers
joining the TCJ ranks, I’m going to keep my column shorter than
usual this time (I know I have said that before, but this time I
think it really wili be true).

For this issue I will be catching up on some correspondence, in-
forming you of the imminent release of the first high level
language for Z-System programming, bringing you up to date on
Z-Node developments (there is a new Z-Node Central), and
beginning a discussion of issues related to bringing up a remote
access system (so that more of you might decide to set up a Z-
Node).

Letters

Despite our requests for letters with your comments and
suggestions, we don’t get very many. Recently, however, Art for-
warded to me two lengthy and thoughtful letters from James Ott.
I would like to begin by addressing some of his comments and
questions.
The ZCPR33 Programmer’s Reference Manual

First, Mr. Ott asked about the Programmer’s Reference
Manual to which I made reference in my ZCPR33 User’s Guide.
Well, the truth is that after writing the user’s guide, I really didn’t
have energy left for another major manual. Instead, 1 started to
release programming notes one at a time as files on the Z-Nodes.
Even at that, I only got to three of them. The files have names of
the form Z33PNOTE.###, where ‘““###’’ is a sequence number.
Note 001 deals with the command status flag in the message buf-

The Computer Journal / Issue #38

fer and the extensions in its use introduced with ZCPR33. Note
002 discusses proper coding techniques for shells under ZCPR33
and later. The third note covers the parsing of files by the Z33 and
734 command processors. I am tempted to reproduce some of
that material here, but then I would surely fail in my resolve to
keep this column to a reasonable length. So you will just have to
look for them at the Z-Node in your neighborhood. If it is not
there, see if the sysop will get a copy from Z-Node #3.

Shells and ZEX

Mr. Ott continued: ‘“The User’s Guide mentions an addition to
shell coding necessary to ensure the shell pushes its name onto the
shell stack when it is called by ZEX.”” 1 think there is some
misunderstanding here. It was under previous versions of ZCPR3
that special code was required in shells to deal with ZEX (and it
never had to do with pushing anything onto the shell stack). Un-
der Z33 and later, this code can (and, to make the programs
smaller, should) be removed. It has now been quite some time sin-
ce the release of ZCPR33, and I think that most shells are now
coded in the more efficient way.

As we have discussed in previous columns, a shell command
comes into play when the command line buffer becomes empty.
In that case, if there is a command on the shell stack, the com-
mand processor invokes that command instead of asking the user
for the next command line. In this way, the shell takes over the
function of the command processor.

ZEX’s function is similar to that of SUBMIT and XSUB
together. While SUBMIT stores its script data in a disk file, ZEX
keeps it in memory. This enables ZEX to run much faster, but it
reduces the memory available to programs. A simple SUBMIT
script feeds a series of commands to the command processor, thus
doing under CP/M what the multiple command line of ZCPR
does. SUBMIT can be useful even under ZCPR, however,
because it can supply a longer string of commands than could fit
into the command line buffer.

XSUB running under SUBMIT allows characters in the script
to be fed not only to the command processor but also to programs
as they run. This is what is called input/output (I/0) redirection.
In this case it is input redirection; the operating system is made to
take its characters not from its normal source—the
keyboard—but from a disk file (SUBMIT) or a memory buffer
(ZEX). This is both extraordinarily useful and extraordinarily
tricky. Long ago I promised to discuss this subject at length in this
column, but I have never gotten around to it. Bridger Mitchell,
Joe Wright, and I are now engaged in a joint project to perform a
major upgrading of ZEX, and I am sure it will be the subject of
TCJ columns by one or more of us.

The ZCPR33 command processor observes the following
hierarchy for acquiring new commands, where step 1 has the
highest priority and step 5 the lowest., The way this hierarchy fun-
ctions is described in more detail in the ZCPR33 User’s Guide.

1. Commands pending in the multiple command line buffer
2. Commands from a ZEX script

17

3. Commands from a SUBMIT script
4. A shell command
5. User input

Under ZCPR30, ZEX did not appear explicitly in this hierar-
chy; it came into play only by virtue of its ability to redirect input
at step 5. This posed a serious problem when a ZEX command
was issued under a shell. Although the user intended the script to
be performed as commands, the shell would take it as input to the
shell instead. To avoid this, rather lengthy code had to be in-
cluded in every shell to see if ZEX was running and, if so, to feed
its input directly to the multiple command line buffer. This
resulted in completely useless loads of the shell code for each line
of the ZEX script. Execution was so slow and annoying that for

- all practical purposes ZEX scripts could not be run under shells.

The ZCPR33 command processor was redesigned to deal with

" ZEX explicitly just as ZCPR30 always did with SUBMIT. ZEX
was placed above SUBMIT in the hierarchy so that ZEX scripts
would function like arbitrarily long command lines and could be
invoked from SUBMIT scripts.

The New Libraries

Mr. Ott had several questions about the assembly-language
libraries that support the Z-System. I will not comment exten-
sively here, but I would like to announce that new versions of the
libraries, which have been in use by a number of us for many
months already, will soon be made available to the public. I had
expected them to be a commercial product, but, for several
reasons, it now appears that the code will be made available at no
charge. Only the manual, which will be quite a large book, will be
sold. This is good news.

One of Mr. Ott’s suggestions was that the Z3LIB routine called
PRGLOAD, which is used for chaining from one program to
another, be updated to allow for type-3 programs. This probably
could be done without a great deal of difficulty, but I am not sure
that it is worth the trouble. What about type-4 programs?
Loading them is much more complex because of the need to com-
pute the relocation to a run-time address. It seems to me that a
better way for programs to chain to other programs is via the
multiple command line buffer. If anyone can suggest any advan-
" tages of a direct load, I would be interested in hearing them.

The Command Line Tail

One of the mistakes in ZCPR30 was its failure to check for
command line tails that would not fit in the buffer from 80H to
FFH. CP/M had no problem with this because the whole com-
mand line was not long enough to allow this to occur. With a 200-
or-more-character command line buffer, there is nothing to stop a
user from entering a command with a tail longer than 128 bytes.
Under Z30 this caused a catastrophe, because the tail was copied
into the buffer after the program was loaded, and then the tail
could overwrite the beginning of the code. Z33 and later monitor
the length of the tail and stop copying before this can happen.

With type-3 programs that load at addresses higher than 100H,
longer tails could be copied without damaging the code, and Mr.
Ott requested that this be implemented in future versions of the
command processor. I think this would be a very bad idea. One of
the reasons for using type-3 programs is so that any code residing
at 100H can be run again later using the GO command. If the
type-3 program’s tail overwrote the TPA, then trouble would oc-
cur when the GO command was executed.

Moreover, there is absolutely no need for such a feature. If a
program wants to support a tail longer than 126 bytes (it doesn’t
even have to be a type-3 program), it can simply read its argumen-
ts not from the buffer at 80H but directly from the multiple com-
mand line buffer. As an aside, I have thought of making the
command processor not convert the command line buffer to up-
per case. Then programs could process lower case input directly
(as in MS-DOS) without the special symbols to indicate case shifts
as in the ECHO and IF INPUT commands. The command tail
buffer at 80H must be converted to upper case for compatibility

18

with CP/M programs, which assume that that will be done.
Besides the fact that there might be a significant code penalty (the
command tail buffer and the command file control block would
both have to be individually case shifted), I worry that there may
be a number of Z-System programs that either rely on the com-
mand line being in upper case or, worse, convert it to upper case.
I’d be interested in hearing any opinions on this topic.

Still More on Z3 vs. Z2 Shells

Mr. Ott sent me a lengthy letter with some interesting examples
of the use of the shell stack. I think his is the first response I have
received that pointed out an aspect of the shell stack that I had
not previously appreciated.

I don’t think about shell command lines with more than one
command, so the following distinction never occurred to me. One
can think of the shell stack as containing not just, say, four com-
mands but rather four groups of commands. The shell stack not
only holds these commands; it also provides the mechanism for
grouping them, for providing parentheses, if you will. The Z2 ap-
proach to shelling would have a very hard time doing this. For
example, if the first element on the shell stack contains the com-
mand line “CMDI1A;CMDIB’’ and the next lower element the
line ‘“CMD2A;CMD2B;CMD2C”’, the equivalent Z2 situation
would have the command line

CMD1A; CMD1B; CMD2A ; CMD2B; CMD2C

The SHCTRL POP command removes an entire Z3 shell entry,
containing possible multiple commands. How could we im-
plement this function with a Z2-style shell? Even if each com-
mand were marked with a ““/s’’ token, one could still not tell
which ones were grouped with which. There might be a solution
to this problem, but the Z3 shell approach certainly handles it
nicely.

Mr. Ott’s letter included a very interesting application example.
I’ve made a few changes that, I hope, do not harm its essence.
When the computer is booted, the STARTUP alias loads the
command sequence ‘“‘FIRSTSH;MENU’’, where FIRSTSH is a
special utility that places the following command sequence onto
the shell stack:

PARK;VID RST.MSG;STOP

When this sequence runs, it will park the heads on the disk drive,
display a message to shut off the computer, and run a program
called STOP that locks the machine. Of course, this multiple-
command shell could easily be replaced by an alias SHUT-
DOWN.

This termination shell does not run immediately because of the
command MENU following it in the command sequence. This
loads a second shell onto the shell stack. The user then lives inside
the MENU shell for some time. At some point, the user may make
a selection that generates the command ‘“CD WORK:”’. This
would log into the WORK: directory and issue an automatic ST
command there. The ST alias might have the script

LDR WORK.NDR;SHCTRL POP;ZFILER

This would install a new set of named directories, pop MENU off
the shell stack, and replace it with the ZFILER shell. The user
could then do some work using ZFILER. From ZFILER, a macro
command might make another shell change by popping the shell
stack and installing another shell.

The above process would continue until the user made an exit
selection. This would pop the shell stack without installing a new
shell. As a result, that first line we put on the shell stack would
become active, forcing the computer to be shut down in an or-
derly, preplanned way. Of course, this approach is not totally
foolproof if the user has access to the power switch or power
cord. But it certainly helps.

Mr. Ott worried that this example could not be achieved using a
Z2 shell system. I think it could, though not with quite the same
ease and elegance. The STARTUP alias would contain the line

The Gomputer Journal/ Issue #38

MENU; SHUTDOWN

When MENU ran, it would substitute for itself in the command
line the desired command line plus its own reinvocation command
with the flag *“/S’’ to mark it as a shell. Thus the command line
would become

USERCMD; MENU /S ; SHUTDOWN

- For the user command CD WORK:, the command buffer would
evolve as follows:

CD WORK:;MENU /S;SHUTDOWN
ST;MENU /S; SHUTDOWN
LDR WORK.NDR;SHCTRL POP;ZFILER;MENU /S;SHUTDOWN

‘When the SHCTRL command ran, it would scan the command
line for the next shell command as marked by the ‘‘/S”’ flag and
‘remove it from the command line. This would leave one with

ZFILER; SHUTDOWN

When ZFILER generates a macro command, the command buf-
fer would have

MACROCMD; ZFILER /S; SHUTDOWN

This would continue until one canceled the shell. Then the
SHUTDOWN alias would run.

Mr. Ott was concerned that the command line would grow
longer and longer as old shell commands piled up. Indeed, this
would happen if there were no ‘popping’ mechanism. The ‘‘/S”’
marker I proposed in my previous columns is critical here, since
without it there would be no way to tell which command to pop.
This approach, I think, would fail with aliases as shell commands.
The Z3-type shell really helps us in this case.

High-Level-Language Support for Z-System

1 have some especially exciting news about the first high level
language specially designed for Z-System. In late January, I got a
phone call from Leor Zolman, author of BDS C. He was in-
terested in bringing out a new version of his C compiler for the
modern 8-bit market. After some consultation with me on what

- was needed to support Z-System, Leor went to work on the run-
time code, and in less than two weeks he had a version ready for
beta testing.

He came over to my house to demonstrate the result, and I was
amazed to see how easily one could write a utility, complete with
named-directory support, even including password protection. A
little fine-tuning is still needed, but I am already excited about the
impact that the availability of this quality high level language will
have on Z-System development. Marketing details have not been
worked out at this point, but you can expect the new BDS C to be
available at an attractive price through Z Systems Associates
(ZSA) channels (Plu*Perfect Systems, Sage Microsystems East,
Z-Nodes, and Z-Plan user groups).

The New Z-Node Central

Ron Bardarson, who had operated Z-Node Central after David
McCord retired as the sysop, decided to change the focus of his
system and his node designation from Z-Node to X-Node. This
was to indicate its experimental nature and its focus on software
and systems development rather than on the distribution of Z-
System software. Its number remains 408-432-0821 (CASJO on
PC-Pursuit).

To maintain a center of support for Z-System users and for Z-
Node sysops, we have established a new Z-Node Central. Richard
Jacobson, whose Lillipute Z-Node in Chicago has long been, in
my opinion, the premier Z-Node in the country, has agreed to
take on this new role. He will continue to use the delightfully
ironic Gulliverian name (at over 100 Mbytes, his is the least
Lilliputian of the Z-Nodes), but his node number now drops from
15to 1.

The Computer Journal / Issue #38

This new function is added to several special services that
Lillipute already provides. It is the official bulletin board and
remote access system for both the North American One Eighty
Group (NAOG) and TCJ. The full system, comprising two in-
dependent computers, is available on a subscription basis. All
users who provide registration information will get 15 minutes per
day of free access. Unlimited access to both computers (within
reason) is available at a rate of $25 for six months or $40 for a full
year. TCJ subscribers and NAOG members get free access to
limited areas and can upgrade to full subscriber privileges at $5
less than the standard rates. Z-Node sysops will have free access
to the full system. The phone numbers are 312-649-1730 and 312-
664-1730, accessible via the ILCHI outdial of PC-Pursuit.

System Security Under Z-System

As part of my plan to build up the network of Z-Nodes, I
would like to begin a series on issues related to setting up a remote
access system (RAS) using Z-System. Many people do not realize
it, but NZCOM and Z3PLUS (the automatic Z-Systems for
CP/M-2 and CP/M-Plus, respectively) create systems with the
full security capability necessary for a RAS. It just takes a few
simple operations to engage it.

These issues have been brought to my attention recently
because I have been in the process of setting up a second remote
access system at my house. This one is for the BOSKUG group of
the Boston Computer Society. It will be a two-line system running
on a very powerful 16 MHz Kaypro 286 computer with
multitasking software. For all this power, however, I was struck
by the tremendous complexity of setting up a remote system on
such a computer, all because of the lack of a secure operating
system.

With MS-DOS, a remote system absolutely cannot allow a
caller to gain direct access to the operating system command
prompt, because once he has that access, there is no way to limit
what he can do. It made me realize how fortunate we are with Z-
System to have an operating system with enough security to per-
mit callers on a remote system to run the system more or less as if
they were sitting at the keyboard of their personal machine. They
don’t have to have an elaborate apparatus standing between them
and the system.

There are two main aspects of that security. One is the wheel
byte. This system flag is tested by many Z-System programs to
determine whether certain operations should be permitted or
denied. Commands for doing things like erasing, renaming, or
copying files typically require that wheel status be in force. Other
commands will allow some operations to non-wheel users but
deny other operations. For example, some directory programs
allow writing an image of the directory to disk or to the printer.
These options are (or should be) restricted to 'wheel’ users. The
wheel byte itself is set and cleared by special commands, such as
the WHL command of the RCP. Obviously, a password must be
entered correctly before WHL will set the wheel byte.

The second and more complex security feature in Z-System
concerns the facilities for limiting the disk areas which a user can
access. Many users are unaware of these features, and even those
who are aware of them often do not understand them fully and
clearly. I will cover the major points here.

With version 3.3 of ZCPR, 1 introduced extensive and
significant changes in the way directory references and security
are handled. These changes made understanding security more
complex for the system implementor but much easier and less in-
trusive for the user.

ZCPR3 supports two basic forms of directory reference, the
disk/user or DU form and the named directory or DIR form. We
will assume that the reader is already somewhat familiar with the
basic concepts. The DU form is native to CP/M, which knows
about disk drives from ‘A’ to ‘P’ and user numbers from 0 to 31
(though there are restrictions on user numbers above 15). The DU

19

e New Automatic, Dynamic, Universal Z-Systems

o Plu*Perfect Systems

der CP/M-2.2 ($75)

(875, $60 for ZRDOS owners)

version)

e BDS C — Special Z-System Version (390)

— Linkers: SLRNK, SLRNK+

e NightOwl Software MEX-Plus ($60)

Sage Microsystems East

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

— Backgrounder II: switch between two or three running tasks un-
— ZDOS: state-of-the-art DOS with date stamping and much more

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

o SLR Systems (The Ultimate Assembly Language Tools)

— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)

— TPA-Based: $49.95; Virtual-Memory: $195.00

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

functions. One is convenience. It is much
easier to remember that one’s assembly
language tools are in ASM and one’s wor-
dprocessing files in TEXT than it is to
remember that the directories are A7 and
B13. The second purpose of named direc-
tories is to provide security.

Access to directory areas in a Z-System
is controlled in both the DU and DIR
domains. Under Z30 these two control
mechanisms were completely indepen-
dent; under Z33 and later, as we shall see,
they are very closely coupled. The limits in
the DU domain are set by values in the en-
vironment descriptor (ENV) called max-
drive and max-user. They define a rec-
tangular area of allowed directories in the
flat directory space, with drive values
ranging from ‘A’ to the drive specified by
max-drive and user numbers ranging from
0 to the number specified by max-user.
The smallest space still includes the boot
directory AO.

Named directories offer a more flexible
means of controlling access to areas on a
system. The user can access a named
directory even if it refers to a DU area that
is beyond the bounds defined above. Each
directory name can have an optional
password associated with it. Whenever a
reference is made to such a directory, the
password is (should be) asked for and ac-
cess granted only if it is entered correctly.

There are a number of important excep-
tions to the two security limits described
above. One concerns the command search
path specified in the Z-System PATH
module. No restrictions whatever are im-
posed on the DU areas specified there. If
the user was able to place a directory into
the path, then it will always be scanned as
necessary by the command processor,
even if it would no longer be explicitly ac-
cessible.

Another general exception occurs for
the standard (but optional) configuration
of the command processor called
WPASS. With this option, when the
wheel byte is set, directory passwords

form of directory reference is basically physical in nature. Drive
letters are associated with real physical devices, and the files in all
user areas associated with a given drive letter are stored on the
same physical device. One can think of this directory structure as
spanning a flat, two-dimensional space (in contrast to the hierar-
chical tree-structured directories of Unix or MS-DOS).

While the DU directories are basically physical, named direc-
tories are purely logical constructs. The named directory register
(NDR) module in a Z-System contains a mapping of directory
names to drive/user values. The user can load different sets of
directory associations at different times. Thus, unlike the static
(fixed in time) directory structure of Unix and MS-DOS, the
directory structure of Z-System can be dynamic (changing in
time).

When the DIR form is used, the command processor or a Z-
System program looks for the name in the NDR and substitutes
the drive and user values. Only drive/user values are used in the
actual file references processed by the disk operating system
(DOS). Named directories provide two different and important

20

are ignored. The user can then freely make reference to any direc-
tories either within the specified DU range or associated with a
named directory (with or without a password).

Versions of the command processor since Z33 also make the
assumption that if a user is in a given directory at the present time
he must have had the authority to get there. Therefore, the com-
mand processor will always accept any reference to the currently
logged directory, even if the DU is out of range and it has no un-
protected directory name.

Another set of exceptions relates to the interplay of the DU and
DIR limits. Recent versions of the command process act on the
principle that if reference to a directory in one form (DU or DIR)
would be allowed then references using the alternative form
should be equally allowed. For example, suppose that the max
DU limit is set to B3 and that directory C4 has the name DIR-
NAME with no password. Z30 would have refused to accept a
reference to C4:, even though it would have no complaints about

(Continued on page 39)

The Computer Journal / Issue #38

Information Enginering

The Portable Information Age
by C. Thomas Hilton

There were a number of topics I wanted to cover in this issue,
which will have to wait until another time. Borland has announ-
ced a new version of PARADOX. PARADOX3 has all the fine
presentation graphics of QUATTRO, and an enhanced QUERY
mode. As my deadline for this issue grows near, my copy of
PARADOX3 has not arrived, and there is little sense in covering
topics that will be soon obsolete.

We will discuss, however, a number of little ‘‘tricks’’ that will
make your engineering of information a bit easier. But first,
another thrilling tale of the adventures of ‘‘Fearless Leader,
Project Manager.”’

The Portable Information Age, or, Ocooooops!

It was a slow Friday. The Fearless Leader was in another panic
mode, preparing documents for an important presentation. I
figured it was a good time to make myself scarce. I figured right.

The following Monday Fearless Leader was in the final throes
of extreme displeasure, which had obviously lasted the weekend.
It seems that, between his clerk and himself, something went
amiss. In the middle of his best performance ever he noticed that
most of the information he was discussing was not in the han-
douts distributed to all the dignitaries. Somewhere, somehow, his
last minute changes did not get printed. After eating more than a

‘little crow, and between embarrassed apologies, he was directed

to an alien computer which contained an alien set of software and
attempted a little ‘‘damage control.”’

Needless to say, Fearless Leader was in no mood to listen to my
usual speeches about backups, data control, or proof reading
documents. He had learned solemn truths in the worst way
possible.

So, my friends, we will begin this issue’s conceptual discussion
about the Portable Information Age. In the discussion which
followed ‘‘Black Monday,”’ the events described above, it was
thought that one would be protected if one assured that Fearless
Leader had a pocket full of disks containing critical data. Well,
that is fine, if you have a computer available things go wrong.

Well, when things go wrong, they seem to always go terribly
wrong. Even with critical data with you, on disk, there is the
problem of an alien computer, assuming it is compatible, to be
dealt with. Next there is the problem of alien software, an alien
printer with alien printer codes.

The obvious answer was to either provide a complete software
environment, that could be booted in the alien machine without
disturbing the existing environment, or make the information
mobile.

It is important to note that it isn’t enough to modem data to
where it is needed, or FAX it, if only the remote person knows
what is needed.

After developing software for all the above options, let it suf-
fice to say that Fearless Leader now carries a TANDY laptop
computer. Mine would arrive about a week later.

So, here we are. The most sophisticated information software
in the world will seldom fit on a dual 720K floppy disk system.

The Computer Journal / Issue #38

Most laptops are XT class machines. The majority of truly por-
table machines have LCD display screens that try their little chips
out to emulate a color display. It will take some time to realize
what problems this presents for the Information Engineer. It also
takes some time to learn to appreciate the incredible value of
being totally portable.

Information Engineers are behind the times when it comes to
keeping up with information needs. When information is locked
to a desk, apart from where it is needed, we are not doing our
jobs. This is a sad, but true fact.

Also true is that, after years of depending upon sophisticated,
high power, software we will be forced to look back to simpler
times for solutions to modern problems. Once upon a time we
were concerned with small file size and speed of program
execution. Then came big and fancy development tools, and an
easy life. In the future, do not be surprised if you find yourself
digging through trunks and boxes for products like the
BORLAND DATABASE TOOLBOX. With Turbo Pascal 5.0
and the DATABASE TOOLBOX a marginal programmer can
create mobile information software in a few hours. These produc-
ts have sure made me a ““local hero’’ in the past few weeks. Good
software for small, slow, mobile machines, which is attractive on
LCD and gas plasma displays, will be in high demand. Prepare
yourself.

“Good software for small, slow mobile
machines, which is attractive on LCD and
gas plasma displays, will be in high
demand. Prepare yourself.”

New Data From Old Files

The biggest problem in dealing with information is that you
adopt the premise that there can never be too much information;
that old information should be recovered. ‘“You never know
when it will come in handy.”’

Another real problem is the creativity and competence of data
entry personnel. One would think that it would be a simple thing
to enter something, as elementary as a name, in the same way,
twice. Unfortunately, some think everything should be entered in
upper case, some with only the first character capitalized, some
with a comma after the last name, some feel no comma is needed.
With this data entry creativity, a list of names, as a simple exam-
ple, looks chaotic at best.

One solution is to force data entry into a common format. The
problem is, someone will do their best to enter the data the way
they feel it should be. In all cases productivity decreases. The per-
son normally called upon to deal with the situation is the Infor-
mation Engineer.

21

One solution I have adopted is to let the data entry people sate
their desires, within reason. In this way, productivity is at a
maximum. Each person enters the data in the way that is best
suited to their personality. I am viewed as less a tyrant than I
would normally be, and a great deal of aggravation is saved all
around. With the data in hand, we can convert data fields to a
consistent format.

Old data files are seldom in the format needed by current stan-
- dards and policy.

Once again, I have selected PARADOX to deal with this task.
Most database products have similar ways to accomplish the text
formatting tasks we will discuss in this issue. I prefer PARADOX
because the ‘“language’’ is simple, straightforward, and easily un-
derstood by nonprogrammers.

LISTING ONE

PURPOSE:

This script changes mixed upper and lower case entries to a
consistent first character upper case format for each word in the
field, ''JOHN JONES'' becomes ''John Jones''

USAGE:

1. Place the cursor in the alphanumeric field to be converted.
2. Press F10 S P and select Set_Char as the script to play

3. Script may take a while if the table is a large one

EditKey ;Enter edit mode

Scan ;Loop, scan all records in table
ExistingField = [] ;Move Current Field Into variable
FirstVariable = Format(''CL'',ExistingField)

;Make all characters lower case
SecondVariable= format(''CC'',FirstVariable)
;Now make first characters Caps
;Put the data back in the field
;End of scan loop
;Exit Exit Mode

[] = SecondVariable
EndScan
Do_It!

end of script

in the field editing mode when the script has done its work. This
script will not work on numeric fields.

A quick look at your data table will show that all text charac-
ters have been formatted as desired! Such a small and relatively
simple script contains great power, and is easy for most people to
understand, with a little study. This is one of the many reasons I
am so fond of PARADOX!

Converting Number Formats From Old Files

When looking for a blank disk, which is rare at the ‘“Hermit’s
Cave,”’ I found some test data that, were it in proper format,
would save a great deal of data entry time. The problem is that the
decimal data was entered in integer format. The graphics routines
used in the old application could deal only with integer data.

It was decided to translate the old data file into a format
PARADOX could understand, and do the conversion there. The
need here was essentially divide any number greater than ten, by
ten, thus rendering a decimal representation of the data.
PARADOX is very forgiving and flexible, when dealing with
numeric formats. In fact, without specific programming, it has
only one common numeric format.

Listing 2 shows a simple script written to make the conversion.
You will note that it is similar to the previous example, and
operates in the same fashion. Place the cursor in the field to be
converted, and ‘‘play”’ the script.

The first problem we will attack is the capitalization issue. For
this example, the required standard is that the first character of
each word in the data field is to be capitalized, the rest are to be
lower case. The PARADOX script we will present is simple, and
quite easy to understand. Its benefit is beyond value.

Listing 1 shows our solution to the capitalization problem. The
“‘script’’ begins by placing PARADOX in the field editing mode.
The script assumes you have placed the cursor in a text only field,
such as a name field.

The SCAN statement forces PARADOX to look at every
record in the table from the cursor position to end of file. It forms
a ‘““loop,”’ in computer-speak.

Next we establish a variable to hold the current field. We will
call this variable ‘‘ExistingField’’ because it will hold the data as it
is found in the raw data record. The ‘‘[]”’ sequence tells
PARADOX to deal only with the current field.

The next sequence is to format the data in the ExistingField
variable, and place it into another variable. The PARADOX
command FORMAT(*‘CL”,ExistingField) tells PARADOX to
convert all text into lower case. FirstVariable then contains the
text characters in all lower case.

The next FORMAT command is used to convert the first
character of each word into upper case format, leaving it in
SecondVariable. SecondVariable is then placed back in the
current field.

The ENDSCAN statement forms the end of the loop, in-
dicating that all commands between the SCAN statement and the
ENDSCAN statement are to be executed for every field.

When all fields in the data table have been dealt with, we
simulate the pressing of the “DO__IT!”’ key to assure we are not

22

LISTING TWO

PURPOSE:

This script searches each record in a table's column looking
for any value that may be larger than 18.0. A field value greater
than 10.0 needs to be converted into its proper decimal form for
use in the Paradox system.

USE:

1. Access a table structure in the normal way, using the VIEW mode.

2. Place the cursor in a table column with an offending value.

3. Press F10 S P and select TO_DEC as the script to play

4. Upon exit table column will have values converted to
decimal format

EditKey
Scan
WorkVariable = []

;Enter Edit Mode

;Enter scan loop for all records

;Move field into variable

;If the field has a value greater than 10
;then it needs to be corrected by shifting
;decimal place to the right one place by
;dividing the value by ten

E
IF WorkVariable >1@ then WorkVariable = WorkVariable /19
[] = WorkVariable ;Move the value back into the table field

EngIf ;End of conditional IF statement
EndScan ;End of scan loop
Do_It! ;Exit edit mode

end of script

If the previous example has been understood, Listing 2 should
present few comprehension problems. You may note that it is a
simple variation on the previous theme. Once a concept is under-
stood, and assumed valid, minor variations can produce powerful
results with the PARADOX system.

Preparing Data for Conversion to Other Formats
) When 1 have to do some serious Information Engineering, I
like to move data from one format to another. Normally I want to
move the data into PARADOX for processing. Many products
can read, and write, dBaselll file formats. This is the format I

normally use to move data between various products and
PARADOX.

The Computer Journal / issue #38

For mobile information systems, particularly those I write in
Pascal, a different intermediate format is required. The easiest to
deal with is what is called the ‘‘Comma Delimited Format.’’ This
is the native format used by many BASIC languages. Essentially,
the data fields are represented by ASCII characters in a single line
of text. The end of line, represented by a carriage return, or
carriage return and line feed sequence, represents the end of the
record. A string data field is surrounded by quotes. Numeric
fields are represented by a series of numeric characters. Quotes
are not used unless the numeric value is of a string data type. In all
cases the field is delimited, or separated from other fields, by a
comma.

The comma delimited data format is very easy to deal with in a
text editor. What I normally do is load the data structure into
'SPRINT, and replace each comma with a carriage return using

. the ‘‘search and replace’’ function. With that accomplished, I
remove all the quotation marks with the same process. This all
works fine, unless there is a comma in a string field, as you might
find separating the first and last name.

If a comma is used by the data entry person, then the number
of fields per record will not be left constant during the initial for-
matting. Remember that I blindly asked SPRINT to replace each
comma with a carriage return so that each field occupied an in-
dividual line. With each field on a line by itself data can be read
into a program in a ‘“‘batch mode,’’ simulating keyboard input.
Now then, if there is a comma in a string field, one data record
will end up with more lines per record than another field, upset-
ting the input sequence. For this process to work each data record
must have the same number of field-lines. An unexpected comma
splits the name field, for example, into two separate fields, adding
what will later appear to be an extra field in a data record.

While it would be just as easy to write a program to accomplish
this conversion of the data, it would still see the comma in a string
field as a field separator. A word processor does the job just as
well. The only way to make this process work is to remove all of
the commas from the string fields in the data table.

LISTING THREE

PURPOSE :

This script removes commas from the current data field to
prevent confusion by information systems reading comma delimited
data formats.

USE:

1. Access a table structure in the normal way, using the VIEW mode.

2. Place the cursor in a table column with an offending value.

3. Press Fi® S P and select TO_DEC as the script to play

4. Upon exit table column will have values converted to
decimal format

EditKey
SCAN
X= MATCH([],''..,..

;simulate the pressing of F9

;form the scan loop indicator
't ,FIRST,REST)

;try to parse the field

If X Then ;1f there was a comma found
[]= FIRST + REST ;recombine the parts
ENDIF ;end of IF statement
ENDSCAN ;1loop until done
DO_IT! ;leave edit mode

end of script

Once again, the short and simple PARADOX script shown in
Listing 3 does the job for us. The mechanics of the script are the
same as the other scripts used in this article, as examples, with one
exception. The MATCH statement.

The MATCH statement works the way most of us have always
wanted a string parser to work. No matter what the language,
there is a command to locate the position of a given character, or

The Computer Journal/ Issue #38

string, in another string. This location is returned as a numerical
value. It is then left up to us to parse out the characters before the
location, or Location — 1, and the remainder of the string from
Location + 1. This avoids including an offensive character, such
as our comma. The PARADOX MATCH statement does all of
these tasks for us.

MATCH is a function, it returns a numerical value. In this ap-
plication of the function, we do not care what the position of the
comma in the string is. The ‘‘x’’ variable is therefore a ‘‘dummy
variable,”” it just keeps the function happy.

We tell MATCH to look in the current field (‘‘[]’’), for the oc-
currence of a comma, ignoring all that comes before and after,
(‘‘..,..”"), where the double dots form the ‘‘don’t care’’ in-
dicators. If there is a comma found in the current field, ‘‘x*’ will
be a nonzero value, indicating the position in the string of where
the match was found. Again, we don’t care where the comma may
be found, only that there may be one.

If a comma is found, the conditional ‘“‘IF’’ block will be
executed, otherwise it will be ignored. If a comma was found, the
string will be parsed into two parts. The first part will contain all
characters up to, but not including the comma, the rest of the
string, also excluding the comma, will be placed in the second
string. These two strings are represented, in Listing three, by the
variables FIRST and REST. The two parts of the original field are
then combined and put back into the current field. The process
then repeats for each field record in the data table.

This is a very important, and an otherwise difficult process to
accomplish. PARADOX makes it easy with a simple script.

Preparing Statistical Data

Since this section is considered suitable for ‘‘advanced’’ users,
you may feel that it may be more complicated, harder to under-
stand. Well, you would be wrong. The more difficult the task, the
easier PARADOX makes it to deal with.

From the QUERY mode we can ask for the average of a group
of numbers, such as test scores, and get an answer. This is as sim-
ple as entering, “CALC AVERAGE,” into the query fields
desired. A more detailed analysis of our data is slightly more dif-
ficult.

LISTING FOUR

PURPOSE:
This script calculates the standard deviation and a sample
deviation from the average of a numerical field.

USAGE:

To use this listing on your data table, you must substitute
V'TABLENAME'' with the name of your data table (in quotes), and
"'FIELDNAME'' with the name of the data field to be processed.

PRINTER ON

+ (See Text)

? '"'"The Standard Deviation For MD+ Is
'',CSTD(' 'TABLENAME'', ' 'FIELDNAME' ')

? ''The SAMPLE Standard Deviation Is'',
SQRT(CVAR(' 'TABLENAME, ' ' FIELDNAME' ')%
(CCOUNT(' "TABLENAME' ', ' tFIELDNAME' ') /
(CCOUNT(' "TABLENAME' ', ' 'FIELDNAME' ')-1)))

+ (See Text)

PRINTER OFF

;5end output to printer

;Turn Off Printer Echo

end of script

For some manipulations of our data we can only use scripts. It
is for this reason that PARADOX scripts have been presented in
this issue. In addition to the average values of test score data, the
client wants to know what the Standard Deviation and Sample
Deviation of the scores are.

(Continued on page 39)

23

Computer Aided Publishing

By Art Carlson

What is Publishing?

Publishing is one of the business areas
where computers can be extremely useful.
Infact, it’salmost impossible todo business
without them. That’s one of the reasons
why you hear so much about DTP (Desk
Top Publishing), and why it is one of the
few growth areas available for micros right
now. But, there is a lot of hype and confu-
sion about what publishing really is.

The purpose of this series is to clarify
what is involved in publishing, how micros
are being used in publishing, and to envi-
sion what can be done in the near future.
We will cover wordprocessors, page prepa-
ration, graphics, laser and high definition
printers, and data management. We’ll also
cover font generation and loading, plus
PostScript and H-P PCL programming
and setting type directly from database and
other programs. It will be necessary to in-

"clude information on typography and the
printing process in order to understand
howwhat we dorelatestothe final product.

Publishing involves a lot more than just
generating camera-ready copy. I break it
down into the four broad categories of
Marketing, Manuscript, Production, and
Fulfillment. Marketing (which you’ll notice
I placed first) is of primary importance.
Before you decide to publish amanuscript,
you have to determine the need, whowants
it, will they buy it, how much will they pay,
what should it look like (what size, hard
bound or paperback, plain or lots of color,
etc.) how you will solicit their order, etc.
Afteritis produced, you’ll have to promote
and sell it.

I placed the manuscript second, even
though most people complete the manu-
script without any thought of determining
its marketability. This is unfortunate be-
cause quite often the manuscript must be
completely redone in order to match it to
its market. Even worse, perhaps it
shouldn’t be published at ali! Atany rate, at
this point, after much research, editing,
rewriting, proofreading, and more rewrit-

24

ing, you feel that you have a manuscript
ready to go. You did do some copyfitting to
be sure of the final page count and to make
sure that it fits on an integer number of
press signatures, didn’t you? By the time
the manuscript is finished you should be
very familiar with your wordprocessor.

With the completed manuscript in
hand,you start thinking about producingit.
That’s unfortunate, because marketing,
manuscript preparation, and production
are mutually dependent, and production
decisions should have been made in paral-
lelwith the other activities. At any rate, now
you decide exactly what the trimmed page
size will be, the size of the active text area
on the page, and how it is going to be
printed and bound. You design the piece,
including front and back matter, table of
contents, index, etc.

With all the facts in hand (or at least in
mind), you set upa style sheet and pour the
text intoyour DTP program (right now I'm
using PageMaker 3.0 on an AT clone).
Then you either dump it out to a laser
printer (this is set on a H-P LaserJet II), or
you send it out to a service bureau for high
resolution output.

Finally, you send your labor of love to
your chosen printer/binder with lots of $$$
and wait for the trucking company to de-
liver the pallets of books. While you are
waiting, you’d better be promoting and
lining up sales so that you can pay the bills.

After the orders start pouring in, you
have to maintain records for the tax au-
thorities, generate shipping labels and in-
voices, and keep track of your customers
because they are your best prospects for
your next book. You also have to pack the
books and deliver them for shipping. The
marketing and fulfillment, including an-
swering phone calls and letters, can be so
time consuming that you never have time
for your second book!

How Important is DTP?
DTP is not really publishing, it’s just the

generation of camera ready copy. And that
is a very small portion of the total publish-
ing effort. I estimate that I only spend
about 5% of my time on the DTP portion.

Publishing is the business of planning
and overseeing the marketing and produc-
tion of printed matter (vieos and CDs are
another matter which I'll ignore here). You
don’t even have to use asingle computer in
order to be a publisher. Everything could
be jobbed out to service bureaus and
freelancers

Jeffery R. Parnau, in his book Desktop
Publishing: The Awful Truth, states that it
should be called Tabletop Typesetting in-
stead of DTP. If you are thinking about
DTP, or even just want to know what it is
really about, get his book (the address is at
the end of this article). It could save you
thousands of dollars and many sleepless
nights. This is the first book I've seen which
really tells it like it is--all the others are just
trying to sell you products which may not
work!

T'use computers for three primary pur-
poses in the publishing business: 1)
Wordprocessing, 2) Database and infor-
mation management, 3) Page preparation.
I could continue to operate without the
database software by reverting to manual
systems, and I could prepare pages by past-
ing up galleys, but I could not continue
without a wordprocessor because I want to
write. If someone left me with DTP and
database software, but took away my
wordprocessor, I'd quit and do something
else!

DTP is a wonderous development
which will greatly facilitate publishing by
providing Tabletop Typesetting. But, it is
page preparation and not publishing. I've
gone overboard to prove a point, and I've
stacked the deck by talking about books.
Someone who needs to produce a dozen
posters about the company picnic will have

(Continued on page 40)

The Computer Journal / Issue #38

Shells
ZEX and Hard Disk Backups

by Rick Charnes

I’d like to start off this issue with an appeal to all users of ZC-
PR3 without a modem to give serious consideration to getting in-
volved in the BBS world. The nationwide network of Z-Nodes we
have established is perhaps the best way we have to educate our-
selves in the many aspects of our extraordinary operating system.
In the long intervals between TCJ issues this network remains our
foremost means of communicating with each other. Its sense of
immediate action and response with many individuals helping
each other and sharing programs that we have written is perhaps
the single most important source of the energy behind the Z
world. All the ZCPR3 columnists you read here in TCJ—Jay
Sage, Bridger Mitchell, Bruce Morgen, Cam Cotrill, Hal Bower
and myself—are all active participants in this network. I cannot
emphasize how much this kind of sharing and give-and-take can
add to your enjoyment of computing. And it can all be done
easily with a minimum of phone charges via PC-Pursuit.

The PC Pursuit network allows those with a modem living in
the metropolitan areas of the U.S. to access any bulletin board
system nationwide (again, in the metropolitan areas of the coun-
try) during weekends and non-business hours for a flat monthly
fee of $30. This makes it easy and inexpensive to call, among
many others, two of the most popular Z-Nodes, the official TCJ
BBS at (312) 649-1730 and Jay Sage’s Newton Centre Z-Node at
" (617) 965-7259. For more information about PC-Pursuit call
Telenet at (800) 336-0437.

There has been much discussion on the Z-Nodes in recent mon-
ths on the subject of ZEX, the ZCPR3 world’s preeminent ‘batch
processor’. It is partly occasioned by Joe Wright’s release in
autumn of 1988 of ZEX version 4.03, partly from continued en-
thusiasm over Jay Sage’s release of NZEX-D quite some time ago
and his incorporation of ZEX into ZFILER’s magnificent group
macro facility, and partly due to the fact that it is simply in
general an extraordinary program allowing for tremendous op-
portunities for automation where nothing (not even King
ARUNZ!) else will do. If I am not mistaken, Bridger Mitchell’s
column this issue is devoted to a reconceptualization of what ZEX
should be, and as a fervent admirer of the program (I use it
wherever I can!) I am very much looking forward to further
developments of this program by Bridger and his colleagues.

In that spirit, then, and as mentioned last time, I would like to
attempt to give readers a flavor of what ZEX can do in the con-
text of discussing one particular use to which I put it, the
BACKUP.ZEX script I use for backing up my hard disk direc-
tories. If others have feared ZEX because of its reputation for ec-
centricity and exotic nature, it is perhaps for this very reason that
I have embraced it. ZEX might be compared to the CP/M SUB-
MIT the way one might compare the experience of listening to a
Top 40 radio station to attending a live performance of the 1812
Overture given by the San Francisco Symphony. Hopefully bet-
ween my and Bridger’s column you will be inspired to archive
good old SUBMIT onto a sturdy but yellowing floppy and move
on up to the ethereal realms of ZEX.

This column is intended generally for those with some prior ex-

The Computer Journal / Issue #38

perience with ZEX. I am not here going to explore all its nooks,
crannies and meadows, filled as they are with fragrant and
variegated bloom, though that would certainly be a wonderful
and worthwhile venture. It will not be a primer on the basics of its
use. I will of necessity touch on some of its features, but my pur-
pose here is mostly to explore a few particular examples of how in
my BACKUP.ZEX script I have interfaced ZEX with both the
ZCPR3 shell variable subsystem and the ZCPR3 registers, the
combination of all three of which is guaranteed to be a pick-me-
up to the most tired of ‘‘there’s-nothing-left-to- explore-in-
CP/M"’ ne’er-do-well’s. In studying some of these fairly specific
ZCPR3 and ZEX programmatic techniques I am taking a gamble
and hoping that the reader can draw some general lessons.

Like a goodly number of hard disk owners I have spent many
(generally happy) hours trying to find the absolutely perfect
program to perform my regular periodic backup of those hun-
dreds of precious files 1 have lovingly created over the years.
Sadly I have found no such program. I have yet to find any
scheme that addresses what I believe to be the central dilemma of
a hard disk backup program: how to ensure during one’s periodic
backups on hard disk directories requiring more than one backup
floppy, that with each periodic backup any given file is copied on-
to the same backup floppy.

When backup programs that have no provision for this are run
for the first time, they simply fill up, in completely random order,
a given number of floppies with the files from the hard disk. Each
successive run copies the files in the same or another random or-
der.

Suppose, however, with this first run of the backup program
my ALIAS.CMD happens to get copied onto the third floppy in a
set of five from my root directory. Then, next weekend when I
run the backup program again, assuming I’ve modified
ALIAS.CMD and the archive bit is therefore turned off, it will
again be copied by the program. But there’s nothing to guarantee
it will this time be copied to the same floppy! It may end up on the
first, or second, or fifth, disk. After several runs of the backup
program I may end up with several different copies of
ALIAS.CMD on different backup floppies, modified at different
times on the hard disk! I have yet to see a satisfactory solution to
this problem in terms of a single program.

In the true spirit of ““Z,”’ therefore, or what Frank Gaude’ used
to call “‘the tool approach,’’ I have written a ZEX file to do the
job. I have decided the best solution lies in copying the files onto
the floppies in alphabetical order. I have settled on six for the
number of backup floppies required by each of my major hard
disk directories. I backup onto floppy one all files beginning with
the letters A through D, floppy two gets the files beginning with E
through J, and so on through the alphabet, reserving floppy six
for the ““Z”> files of which for some mysterious reason there
always seem to be an inordinate number on virtually all my direc-
tories. ..

I do this with 26 separate invocations of PPIP (renamed to
COPY), one for each letter of the alphabet, used with its ‘/ae’ op-

25

tion to indicate ‘‘copy only files which have been modified files
since last backup, and write over the destination file without
querying,”’ as follows:

A<Backing up files A-D...A>

copy a¥.* bak: /ae

copy b¥.¥ bak: /ae

copy c¥.* bak: /ae

copy d¥.* bak: /ae

A<Pplease remove DISK 1 and insert DISK 27>
A9

A <Backing up files E-J...”>

copy e¥.* bak: /ae

copy f*.* bak: /ae

- ete.

Any text between A< and > is echoed directly to the screen.
The A? command stops and waits for the user to hit any key at
which point the script continues.

You needn’t worry about ZEX files being too large. Once
they’re loaded no further slowdown in your system is noticed. In
any case, while they’re being loaded you don’t have time to get
impatient as you’re too busy watching the beautiful video screen
display you’ve created!

This alphabetical ordering scheme ensures that every file is
always backed up on top of its previously backed-up copy/ver-
sion. This week’s ALIAS.CMD is always copied over last week’s
ALIAS.CMD, and today’s TCJ-COL.2 will always and
automatically be copied onto the same disk as yesterday’s copy.

I have over the years added to my BACKUP.ZEX the most
beautiful graphics and box drawings of which my Qume 102 is
capable, and combined with extensive use of its video attributes
such as reverse video, blink, underline, and cursor off 1 have
created what I feel to be the equal, in terms not only of fun-
ctionality and power but of beautiful screen display, of any MS-
DOS backup program. Of course there’s one additional factor
that in my eyes makes it even better: I wrote it myself!

1 should mention as an aside that a very large number of

- popular and common CP/M terminals are capable of a great deal

more graphics, boxes, windows and other fancy video displays
than we normally use or even suspect. These features often
remain unknown and unutilized simply because they were never
standardized among the great variety of CP/M-style terminals.
There is nothing, however—I repeat: nothing—to keep an in-
dividual user from creating for himself quite and surprisingly
beautiful, if not transportable, screen displays. ZEX scripts, with
their ““~<text display?>”’ command, along with ZCPR3’s
ECHO command, give the user a great opportunity to do this,
and many of my ZEX files and ARUNZ aliases are real beauties.
It is especially unfortunate that these fancy features go unused in
our CP/M-compatible world; the lack of ‘“‘graphics’’ is always
being touted as one of the reasons for people’s decision to leave
their old CP/M box behind.

Years ago Dennis Wright wrote a set of assembly language
routines, GRWLIB and GRXLIB, that produce extremely
sophisticated and beautiful graphics windows and menus, the
windows capable of overlaying each other, appearing and disap-
pearing, with text inside, etc. Similarly we already have one set of
graphics windowing libraries for Turbo Modula-2, and Mr. Ed-
ward Jackson of California will soon be releasing another. I have
used these Modula-2 routines to write COM files on my little ol’
Morrow that rival displays I’ve seen on early Macintoshes and
video arcades. I would urge users to take with a grain of salt
claims for any alleged ‘‘lack of graphics’’ in CP/M and to incor-
porate these library routines into their programming. The
beautiful displays really make a difference and greatly add to a
finished product.

In any case, the alphabetical ordering scheme I use in my

26

BACKUP.ZEX, along with the beautiful graphics I have coaxed
out of my terminal with it, has not only proven eminently
satisfying but has had the unintended (but very welcomed) side ef-
fects of giving me an opportunity to spend many happy hours
acquainting myself with my terminal’s video commands at the
same time as it sharpens up my ZEX skills. . .

In any case, until about six months ago I had felt my
BACKUP.ZEX to be complete as described above. The
alphabetical ordering scheme worked perfectly, and the artistic
video displays and friendly messages I added to it made backing
up a pleasure, certainly an important consideration in a task nor-
mally considered to be the quintessential drudge work. After ad-
ding the ability, as described in last issue’s column, to display to
the screen the date and time of the last backup (about which I felt
and still feel very proud!) I could think of neither bell nor whistle
to add to it.

The only thing that occasionally bothered me is when my
backup disk would fill up. This situation is most annoying. PPIP
would of course report the error, but considering I’m inside a
ZEX file there’s not much it can do about it. If the disk would fill
up, for instance, during the backing up of the ‘‘B’’ files, I would
then have to suffer through PPIP’s attempts to copy all the unar-
chived ““C”’ and ““D’’ files, with each of these attempts virtually
guaranteed to fail. Although PPIP is smart enough so that if it
senses the destination disk is full during one of the copies in a
PPIP B*.* BACKUP: command it will abort that particular wild-
card operation, there’s no way it can anticipate the NEXT com-
mands, being here of course ‘PPIP C*.* BACKUP:’ and ‘PPIP
D*.* BACKUP:.” It would then of course blithely attempt to
execute these even though the task was impossible.

How was it to know this? I had to patiently watch sometimes 5,
6 and 7 PPIP ‘‘disk full’’ messages during copies and not being
able to do anything about it. If I would CTL-C during the par-
ticular PPIP operation that sensed the disk full, it would report a
“User abort,”” terminate that particular PPIP command-—and
simply move on to the next.

Well, what do you expect? It’s just a computer!

I had only one way out of it at the time. Each time my backup
disk would fill up, I would despairingly watch it happen, poor
PPIP torturing itself with trying, and when the script paused for
me to change disks I'd CTL-C out of it and abort the entire ZEX
script. I’d then manually erase on the backup floppy whatever
files I determined unnecessary and obsolete, and restart the script
from the beginning.

Though it being the late 80’s and I knowing this isn’t what
computers are supposed to do, I couldn’t really think of any way
out of the situation. I mean after all this is on an obsolete Morrow
computer running an esoteric and little-used enhancement of an
antiquated operating system. What, after all, could I expect?

Operating under the principle, however, in my life generally as
well as in my computer programming specifically that it ain’t
what you got but what you do with it, the Great Spirit of Com-
puters seems to have paid me one of its irregular visits. It one day
hit me: if PPIP is smart enough to know when a destination disk
full, can’t I get the operating system to know? This is ZCPR3, af-
ter all.

I keep hammering home to all who will listen that one of the
unique aspects of ZCPR3 is the way it provides methods for all its
separate componernts to leave messages for each other. This is the
raison d’etre of the ZCPR3 message buffer generally and the error
flag particularly, the latter of which is here the perfect messenger
for our job.

I decided to modify PPIP, otherwise a ZCPR3 tool in only the
most superficial manner, to set the ZCPR3 error flag under cer-
tain conditions. I added code so that it now sets said flag to 7 (this
figure arbitrarily chosen) if it senses a destination disk full. This
way we provide a hook, through the “IF ER 7’’ command, for
ZCPR3, and not just PPIP, to sense the disk full condition—and
ther: provide a way out.

The Computer Journal/ Issue #38

While I was fiddling around with PPIP’s internals I decided to
also set the error flag if the user enters a CTL-C during a copy
operation. Occasionally I would see a backup copy take place that
for a number of different reasons I didn’t want to happen, and I
had always wanted some way to allow ZEX, and not PPIP alone
to abort if this happened. Now I had it.

Finally, PPIP will now set the error flag to ‘9’ if the destination

_directory has no remaining entries. PPIP19 with these above

modifications is available on all Z-Nodes.

All that was necessary in the ZEX script was to add the com-
mands IF ERROR;GOTO ERR;FI; after each invocation of
PPIP as follows:

copy a¥.¥ bak: /ae
if er
goto err

fi

copy b-.¥* bak: /ae
if er

goto err
fi

After I had modified PPIP to set the ZCPR3 error flag I then
created a routine at the bottom of the script and began it with the
label ;ERR’ (ZEX labels begin with a semicolon). At this label
there are one of two error messages, saying either that the backup
disk was full (error flag set to 7) or that a user abort was entered
(error flag=8). (I didn’t bother adding a ‘directory full’’ error
message as that never happens on my floppies, though that could
easily be done.) The user is thus given this message both by the
program (PPIP) and the operating system (ZEX acting here as a
proto-operating system.) The script would then properly abort as
I wanted. No more helplessly watching unnecessary and im-
possible copies.

A listing of the error routine of BACKUP.ZEX is printed as
Figure 1.

As it is fairly long I am not going to describe here the entire
script. I want only to focus on the parts of it that relate to the
sparks that went off in my mind consequent to the above
modification.

The code I added above (if err;goto err...) simply prints an
error message and lets ZEX abort to the command processor.
Having ZEX abort was the only way I could conceive of dealing
with the situation. When the backup disk filled up I needed to do
some work on my own, outside of ZEX, to erase unneeded files
on the backup floppy as well as other things. I would never be
able to anticipate which tasks I would need to perform. Aborting
ZEX and returning to ZCPR3 provided an opportunity to do
whatever I needed to. When I was ready to resume I would simply
rerun the ZEX script.

But the Muse of Computer Automation wouldn’t let go of me.
Soon I started thinking: here I am using this incredibly powerful
tool, suited to the automation of many tasks. Why do I need to
exit from it? Can’t I configure my ZEX script so that it will allow
me to run a few commands from the ZCPR3 command line on my
own, and then continue with the script? I had never before used
ZEX precisely in this manner, to allow for user input from the
ZCPR3 command line. If I could, however, it would let me do the
above erasure of files or whatever is necessary so that the backup
floppy will have enough room, and then return to the script.

This was an interesting challenge. ZEX has an ‘‘allow user in-
put”’ directive (*’*), which I naively at first thought might do the
trick. I quickly realized, however, that this directive is primarily
to allow user input inside an application program, not at the
command line. No matter how I tried, no matter which internal
ZEX command I experimented with I couldn’t set it up so that
ZEX would stop temporarily while at the command line, query

The Computer Journal / Issue #38

me to enter a command, and then resume the script.

Where to turn?

The ZCPR3 utility CMD.COM popped into my head. After all,
this is its function: to query for a command and then execute it.
As you will recall from my first column, it is ideal for use inside a
SHSET command line. However, I quickly discovered it is not
meant for use within a ZEX script. ZEX will not stop at CMD
and properly wait for a user command but rather will continue to
send commands from the ZEX command stream. I am sure the
reasons for this are very simple and logical, though they are at the
present unknown to me.

Enter ARUNZ. In ZCPR3, when in doubt, look to ARUNZ.
ARUNZ’s “‘query for user input’’ command was a definite can-
didate for the job. I wondered if ZEX would allow this feature to
operate. This is a greatly simplified explanation, but generally you
insert the text you wish to display to the user between a $¢“ and a
*?and then recall it later in the command line with $°11. A com-
mon use is:

$''Enter a command: '’

The user then enters his command or series of commands,
complete with parameters if necessary, and then the entire string
that the user entered is recalled wherever in the alias with the
““$’11>’ command.

I tested an alias using this technique and it worked perfectly.
An invocation of an ARUNZ ‘‘user input’’ alias inside a ZEX
script allows you to pause the script, enter a command to be sent
to the command processor, and then resume to the next comman-
ds in the script. Used inside BACKUP.ZEX this would allow me
to enter whatever commands necessary to erase files from the
backup disk, and then return.

Now that I had my tools my plan of action began to unfold as
follows:

(1) Tell the user his backup disk is full.

(2) Store the name of the current directory in memory.

(3) Log on to the BACKUP: directory.

(4) Provide a directory listing to allow the user to see
what files he has there.

(5) Provide a means to erase unneeded files, using
whatever and however many commands the user sees fit:
ERASE.COM, NSWEEP.COM, ZFILER.COM, etc.

(6) Return to the original directory.

(7) Resume the ZEX script where left off before the disk
full error occurred.

In step five I realized that not only did I want to give myself
freedom to choose whatever tools for erasing that I wished, but
that I also wanted ZEX to load up one or two specified utilities
that would facilitate that task for me.

Was this all possible? Item (7) seemed especially challenging.
ZEX didn’t keep any ‘‘pointers’ to where it was in the script.
This entire scenario certainly seemed to me much more elegant
than having the ZEX script simply abort, but was it program-
mable?

First I began thinking about what commands I would like to
run to facilitate the task of erasing files. Initially I thought it
would be nice to run ZFILER which is generally the perfect tool
for mass file deletions. In case, however, you haven’t yet run into
this situation (many of us discovered it with WS4), ZCPR3 shells
cannot reliably be run from inside a multiple command line or
ZEX script. In any case, I decided an approach utilizing (1)
DIR/ERASE and (2) NSWEEP would be better. DIR and
NSWEEP are better than ZFILER anyway in giving the user a
better grasp of the relationship of the sizes of individual files to
the total space remaining on the disk. ZFILER only allows display
of individual file sizes with a manual Column for TCJ #38,
May/June 1989¢‘F’’ command.

I should point out here that Jay Sage’s recent opinion that
programs such as ZFILER and the like might perhaps be better

27

made ZCPR2 rather than ZCPR3 shells is right on point here; we
would then be able to use it in our script if we wanted.
Temporarily putting aside the details of working out the
challenge posed by step (7), I went to work. At the error routine
label in BACKUP.ZEX I used the ~<text*> command (with
fancy graphics, of course) to display a message indicating that my
backup disk is full. The problem of storing (and later returning
to) the current directory is taken care of by Paul Pomerleau’s lit-
‘tle-known PUSHI11.COM, available on all Z-Nodes. Though
ARUNZ has many symbols available for this purpose we are not
inside ARUNZ and therefore need a standalone program. En-
tered with no parameter PUSH stores the current DIR:. Later in
the ZEX script, when we are finished with our work on the
BACKUP: directory, the command ‘PUSH !’ restores it.
" I next log on to the BACKUP: disk and then do a DIR com-
mand, so I will have a listing of files in front of me.
Then going to my ALIAS.CMD I wrote an alias called IN-
PUTERA which will serve as a preface for ERASE.COM:

INPUTERA $''Enter files to erase as a filelist: ''if “nu <<
$'11; erase $'l11;sp;else;echo nothing entered.;fi

As discussed previously there is no reason we cannot run an
ARUNZ alias from within a ZEX script. Though it occasionally
presents far-ranging problems concerning the ZEX INPUT flag,
that need not concern us here.

This will display:

Enter files to erase as a filelist:

on the screen and pause. If I now see from the DIR listing that
files CHAPTER.1 and PROG.Z80 on the destination floppy are
both 20k in length, obsolete and unneeded and obviously taking
up precious space on the disk, I could enter:

CHAPTER.1,PR0G.Z80

The ARUNZ script, which now has control, would then expand
to:

ERASE CHAPTER.1,PROG.Z80

and my lovely but no longer wanted files would be un-
ceremoniously deleted. (The question of how to ensure that one’s
backup floppies are continually updated—i.e. contain only files
existing on the hard disk—is another story. I sometimes use Car-
son Wilson’s CHECK28 program for this, which compares direc-
tories and shows which files are missing on one or the other, and
sometimes a lovely ZFILER group macro script that Carson
Wilson conceptualized.)

If nothing is entered at this prompt (’if nu $’l1’) then
ERASE.COM is bypassed and the message ‘NOTHING EN-
TERED’ appears on the screen.

One proviso is in order here however, concerning the use of
ARUNZ within a ZEX script. In writing BACKUP.ZEX I had the
most interesting and unusual experience—from which, as usually
happens, I learned immensely. At the point in the script where the
aliases execute my computer locked up. Try as I might I could not
figure out the reason for this. It was a particularly edifying ex-
perience, actually, because through it I learned that the normal
technique I use to trace down bugs, the one that is considered the
standard for programmers the world over, only works 99% of the
time. That technique is of course the isolate- the-problem-by-
stripping-away-extraneous-factors-one-by-one method. I have
used this technique countless times and it has normally worked
perfectly. After stripping away as many factors as possible, so the
theory goes, you then add them back one by one and at some
point—VOILA!—you find it. This was one time it didn’t.

I isolated extraneous factors in this case by making an extract
of the relevant part of the ZEX script and running that as a mini-
script. This time the script worked, seeming to confirm the
theory.

To make a long story short, however, I discovered, after many
weeks, that the lockup was caused by a TPA problem. Un-

28

beknownst to me—and perhaps to its author—type 3 ARUNZ
running at 8000h will lock up when there is less than 39k TPA
available to it on the system. Many users may think it completely
impossible to ever drop down that low, but let me warn you: when
you do work with ZEX scripts you may often be surprised at how
low the mercury can drop on your TPA thermometer. ZEX.COM
itself uses about 3.5k of TPA. On top of this you have to add the
memory occupied by the script. BACKUP.ZEX is a bit over 8k in
length. I start out with 50k TPA on my hard disk system; within
this script I’'m down to about 38.5.

The solution? Easy: it was precisely for these situations that the
type 4 concept was invented. Make sure you’re running ZCPR34
and use the type 4 ARUNZ, which has code to determine
wherever is the most efficient place in memory for it to load and
run. 8000h is obviously too high with only 38.5k TPA, so it sim-
ply relocates itself someplace lower in memory and runs perfectly.

Now we can load up NSWEEP. Control is returned to ZEX,
where it sees an invocation of this honored utility. I should note in
this regard that a friend and I have both found NSWP207 to
mysteriously malfunction on drives E: and F:, so I use NSWP205
here. Since we have the ‘ZEX input’ flag turned to OFF we can
enter whatever commands we want while inside NSWEEP, and
ZEX is temporarily kept at bay. This allows us to see file sizes, get
a feel for what’s expendable and what’s not, view files with an eye
towards determining what can be erased, etc.

Now we come to the above-mentioned ARUNZ alias I wrote to
give myself the ability to do that for which ZEX itself has no
direct provision: to pause, allow the user to enter a command
from the ZCPR3 command line, and then return to the ZEX
script.

Our next ZEX command is then the ARUNZ alias INPUT:,
which might be said to be a ZEX-compatible CMD.COM. It
looks as follows:

INPUT $''Enter any command ('EXIT' to exit <<
ZEX completely): ''$'l1;inputret $1

INPUT simply displays its message on the screen, and whatever
commands the user enters are stored into the ARUNZ symbol $’11
and then executed. I also want to make an allowance for a case in
which something has definitely gone awry and the user absolutely
needs to exit from the ZEX script. In that case the following
ARUNTZ alias EXIT does the job:

EXIT poke $+m0008 0O

Eight bytes above the beginning of the message buffer is the
‘ZEX control byte.’ If that is poked to zero (as it normally is in
non-ZEX operation) it shuts off the ZEX preprocessor com-
pletely and we are returned to ZCPR3. Incidentally, this effect is
NOT realized by simply hitting the carriage return at the INPUT
prompt, which would simply continue the ARUNZ alias and ZEX
command sequence.

Although I could have put this ‘EXIT’ sequence directly into
the original alias, I preferred to have it accessible from anywhere
as an alias in its own right.

If ‘exit’ is not entered, then we are ready to give the user his last
chance to enter any necessary commands, to definitely ensure that
all unneeded files are erased from the backup disk and that there
is sufficient room to continue the backup procedure before retur-
ning to ZEX. We therefore have INPUT chain to a second alias
which I have called INPUTRET, which will indicate to the user
that this is his last chance and then return to ZEX.

I should mention that a few days later, after I had added all the
features I wanted to this ZEX script, INPUTRET looked a bit
different, but at the time it was simply:

INPUTRET $'' Enter your final command ('or EXIT' to exit ZEX <<
completely): ''$'11;if eq $'11 exit;echo returning <<

to zepr3...;push !;else;sak /p2;fi

The Computer Journal/ Issue #38

—exactly like INPUT above except rather chaining to a second
alias if the word ‘EXIT’ was not entered it would pause 2 seconds
and return to ZEX. If ‘EXIT’ was entered, the EXIT alias is tem-
porarily nested in, then ‘PUSH !’ restores the current directory
and we return to ZCPR3.

We are now faced with the situation, as mentioned before, of
wanting to return to the body of our ZEX script. So far so good;
nothing special is required to do that. We certainly want to return

" to the part of ZEX outside the “‘error’’ routines from which we
had just come, the part that does the actual copying. Probably, or
so my original thinking went, we should use ZEX’s *: directive
here, which reruns the command script from the beginning.

Wouldn’t it be wonderful, though, if we could do the seemingly
impossible: to return precisely to where we were before the error
was issued (backup floppy full or whatever). But how could this
‘be done? Unfortunately, for all its power one thing ZEX doesn’t
have is an ‘‘end subroutine’’ or ‘‘end procedure’’ command like
actual languages do by which after a routine or procedure is jum-
ped to and completed, control is then returned to where it was
just past the jump (goto) command. Sure, we can use
GOTO.COM, but ZEX has no internal ‘“pointer’’ by which it can
keep track of where it was just previous to the GOTO to allow it
to return. Once a GOTO GOes TO someplace, there’s no coming
back.

Or is there?

If there’s one thing I would hope ZCPR3 users get out of my
work it is the power of the registers and other similar functions to
pass messages back and forth to utilities.

I thought about it for a while—*‘registers’> must have been
going off in my head—and I knew how it could be done.

1 went back to the body of the script and added two lines at
each invocation of PPIP. I added before the beginning of each, a
label whose name was the number that corresponded to the letter
of the alphabet. Where I copy the ““A”’ files became label ‘1”’,
the “B”’ file copy sequence became label ‘“2’’, and so on up to
label ““26° for ‘Z’’. Then I added an invocation of REG to set
ZCPR3 register 1 (chosen arbitrarily) to this same value. The
beginning of the script now looked as follows:

"A<Backing up files A-D...”>
;=1
copy a¥.* bak: /ae
if er
reg s1 1
goto err
fi
3=2
copy b¥.¥ bak: /ae
if er
reg s1 2
goto err
fi
3=3
copy c*.* bak: /ae
if er
reg s1 3
goto err
fi
;=4
copy d*.* bak: /ae
if er
reg sl 4
goto err
fi
A<Please remove DISK 1 and insert DISK 24>
A9
A<Backing up files E-J...A>
3=5
copy e*.* bak: /ae

The Computer Journal / Issue #38

if er
reg s1 5
goto err
fi
etc....

Get it? Who cares if ZEX has no internal pointer? Our
operating system is so superb it provides enough services exter-
nally! We use register 1 to be our external pointer for ZEX.

What we’ve done is use the REG command to set register 1 to a
different value depending on where in the alphabet we are in our
copying when the disk full message was given. If PPIP detects a
disk full error during copy of the files beginning with the letter
“A”, PPIP itself sets the ZCPR3 error flag and then we set
register 1 is set to “‘1”’. If the disk full is detected during the copy
of the ‘B’ files, register 1 is set to “2”’, and so on up to *‘26”’ for
the ““Z”’ files. These values are arbitrary; assigning the numbers 1
to 26 to the letters A to Z simply makes the most sense. In other
words, if an error is detected, register 1 will be set to a value from
1 to 26 depending on which files we have just been copying.

“A ZCPR3 programmer isn’t worth his
salt if he ain’t creative; the operating
system sure gives us enough oppor-
tunities.”

You may wonder how this information could possibly be useful
to us. How can setting a register—a feature of the command
processor—could be useful to ZEX which (unlike ARUNZ) has
no internal symbol to represent the contents of the registers. Jay
Sage has been meaning (when he pares his workday down to 18
from its current 20 hours) to add the entire ARUNZ symbol struc-
ture, which includes a symbol for the values held in the registers,
to ZEX. Until that sweet time comes, however, we must be inven-
tive. And a ZCPR3 programmer isn’t worth his salt if he ain’t
creative; the operating system sure gives us enough opportunities.

_!igurel. LISTING OF BACKUP.ZEX ERROR ROUTINE:
goto end ; if no error
j=err
zif
if er 7 ; CTL-C entered
goto errseven
fi
A[ZEX has detected that the BACKUP disk is full.”]
sak /p2 ; leave message on screen for 2 seconds
push
backup: ; log to backup directory
dir
/inputera ; run 'ERASE' alias
~A[”|*|Loading NSWEEP might help, so you can view your files...”|"}
ns ; NSWEEP
/input
/inputret
push !
rs goto $$rl ; return to where we left off
j=errseven
A[*|abort request detected, ZEX script terminating...”|*}
zif
;=end

29

Enter (1) RESOLVE, and (2) one of my favorite ruses, ye olde
‘“‘numbers-as-a-character-string’’ routine, delved into in some
detail in my last column.

Pay attention to the ZEX labels I’ve added, which have the
form ; =labelname, that I have inserted before each COPY com-
mand. The name of the label before copying files beginning with
A’ is “1”’; the label just preceding the copy of “‘B”’ files is
named ‘“2”’, and so on through Z. A ZEX label name, just as any
filename or in fact most any other name we use in computers,
may consist of any alphanumeric characters and there is no reason
we cannot use digits instead of letters. It’s the same scheme we use
with setting the register. At the label named ‘‘3’’, we copy files
beginning with the letter ‘‘C*’ and upon an error at this point set
_ register 1 to 3. We will see shortly how handy this is.

After the INPUTRET alias has taken us back to our ZEX
script, the next command in BACKUP.ZEX is:

RESOLVE GOTO $$R1

Remember that since we are in ZEX a double dollar sign is how
we represent a single dollar sign; ZEX strips out the first. So we
are left with ‘$r1°. Of the many things that RESOLVE does one
of them is return the value of any of the ZCPR3 registers—and
for this we should be grateful or else this entire procedure could
not work. ‘$rl1’ therefore expands to ‘‘the value held in register
1 . 9

Now let’s go back to our script and simulate a real-life
situation. Suppose we are backing up our MEX: directory and we
are on backup disk number 4, While PPIP is copying the files
beginning with the letter **S”’ it runs into a full destination disk. It
sets the ZCPR3 error flag and then our ZEX script sets register 1
to the value of 19. ZEX then jumps to the error routine at the bot-
tom of the ZEX script. We are told the disk is full, we get a direc-
tory and are asked which files we’d like to erase. We erase a file or
two here. NSWEEP loads and since we are able to use its V)iew
command we see a few more files that are redundant, though
we’re not absolutely sure yet we have enough space on the backup
disk to confidently return to the ZEX copying routines.

We next take advantage of the INPUT alias, which allows us to
run any program of our choosing, to run Carson Wilson’s FD
which gives us a better sense of which files on the disk are most
recent. We use this new information about datestamps to deter-
mine that there is one very large and old file for which we no
longer have any use, and therefore at the final, INPUTRET
prompt erase it. We are then finally returned to ZEX. At this
point the next command ZEX encounters is ‘RESOLVE GOTO
$SR1°,

Since register 1 is set to 19, this command will expand (or
“resolve’’) to ““GOTO 19”°, which means go to the ZEX label
named ¢‘19”’. Again, there is no reason we cannot have a label
named ““19”’, even though label names are usually composed of
letters and not numbers. Our label ‘‘name’’ not so coincidentally
happens to be the numerical value held in ZCPR3 register 1, and
this suits RESOLVE just fine. And-—what do you know—label 19
just happens to be at the ““COPY S*.* BAK: /AE’’ command. So
GOTO returns us exactly to where we were in the ZEX script
before the error occurred.

Neat, huh? I had done what I’d set out to do.

Never one to give myself any rest, however, a day or so later the
thought came to me (a classic symptom of that dreaded disease
that programmers get, ‘‘feature-itis’’): wouldn’t it be nice if we
could get a message flashing on the screen:

RETURNING TO THE ''S'!' FILES...

just before the actual return? Sure, I said; why not?

But how to do it? How, where, and what could possibly send to
us this *‘S,’’ and how would we store, keep track of and later ac-
cess it? Could PPIP possibly send this letter to us somehow? If
not PPIP, then what? I challenge anyone who doesn’t think in
terms of RESOLVE and shell variables to come up with a

30

solution, short of writing a new program. ..

The idea is to create a *.VAR file that matches letters with
numbers. In other words, we’re going to set up a situation in
which when RESOLVE finds the string ‘%19’ it will give us the
letter ‘S’. Here’s what we do. We’re going to define some
variables into our SH.VAR file. This time I’m not going to bother
defining another *. VAR file as the current one.

We use SHDEFINE as “SHDEFINE SH.”” Note that with
SHDEFINE even if another variable file is currently defined to
the system we can specify as a command line parameter the par-
ticular file to which we would like to add or replace variables.
Using SHDEFINE’s E)dit command we add the following
variables and definitions, starting from where variable ‘1’ =
definition ‘A’ and going all the way to variable ‘26’ = definition
VAN

VARIABLE
NAME DEFINITION
1 [RYR
2 tigre
3 g
4 tipte
5 PRt
6 PRt

and so on, until 26 and *‘Z’’. Now, we can add one more com-
mand to our INPUTRET alias described above
(RESOLVE.COM is always renamed to RS.COM):

RS ECHO RETURNING TO WHERE WE WERE-AT THE %$RFO1 FILES...
and the entire alias becomes:

INPUTRET $'' Enter your final command ('or EXIT' to exit ZEX <<
completely): ''$'11;if eq $'11 exit;echo returning to <<
2cpr3...;push !;else;rs echo returning to where we <<

were-at the %$rf01 files...;hold 2;f1

Don’t worry about the length of this alias, even if with your
editor it exceeds 200 characters, the number normally associated
with the limit of the command line buffer. Any text in the ‘user
input’ part of the alias is not placed in the command line buffer
and should therefore not be counted towards the 200 characters.

Can you understand this alias? It is similar to, but slightly dif-
ferent from the RESOLVE GOTO $$R1 command we put in our
ZEX script. Here we are relying on ARUNZ’s and not
RESOLVE’s register-expansion facilities, and the syntax is
slightly different. Here in an ARUNZ script in which we want to
represent ‘‘the contents of register 1’> we must follow the ‘““‘R”’
(stands for Register, of course) with an ‘‘option letter,”” followed
in turn by the register number. Our *‘F”’ option means ‘‘floating
decimal,”’ whereas if the number is one digit long, we want it
represented as one digit only, and if two digits it should appear as
exactly two, and similarly with three. In other words, don’t give
us any leading zeroes, only the raw number. When RESOLVE
returns the contents of a register it never puts leading zeroes;
ARUNZ’s option letters allow it or not.

By the way, it should be noted that RESOLVE cannot expand
both the register value AND the ensuing and contingent string
variable (that the register value then becomes). Therefore, we
cannot put this command inside the ZEX file; we must put it into
ARUNZ where we can rely on ARUNZ’s register expansion sym-
bol and leave the variable expansion up to RESOLVE. Unlike in
our first use of RESOLVE where it expands the register contents,
here ARUNZ does so.

With our register 1 still set to 19 ARUNZ resolves the register
symbol ‘$rf01’ and our command then becomes:

RESOLVE ECHO RETURNING TO WHERE WE WERE-AT THE %19 FILES...

The Computer Journal/ Issue #38

Now RESOLVE’s variable-expansion, and not its register- ex-
pansion facility comes into play. ARUNZ has sent it the string
919, Remember that when RESOLVE sees a ‘%’ it knows
that a named shell variable is to follow. It knows therefore to look
in the currently defined shell variable file, defaulted to SH.VAR
unless we have defined it otherwise with SHFILE.COM (we
haven’t), and determine the definition that has been given to that
.variable. That definition is then returned to us for our use. So
RESOLVE then looks into SH.VAR for a variable named ‘19",
And what does it find? Of course—the letter ‘S’.

Our command line is therefore expanded to

ECHO RETURNING TO WHERE WE WERE-AT THE ''S'' FILES

. ECHO presents this lovely and informative message to us on
the screen, we are tickled pink that our operating system is so
elegant, and finally control is passed back to the exact point in
ZEX where we were when the disk full message first occurred and
where RESOLVE, GOTO, ZCPR3 registers and ZEX labels team
up to make us feel incredibly grateful for this work of art called
ZCPR3. :

Before closing, I’d like to mention that in the last few months I
have been experimenting further in the vein of last column’s
topic, writing more and more programs to store various dates in
shell variable files. As a result I have come up with something I

believe will be very handy for users of the PC-Pursuit network.
Until now monthly use on PCP has been unlimited. Beginning on
May 1 however that will all change. There will then be a monthly
limit of 30 hours, after which any use will be charged on a per-
time basis.

I am sure that users of MS-DOS communication programs have
been busily rewriting their scripts and utilities to be able to keep
track of their monthly time so the user will be alerted when ap-
proaching the 30 hour limit. Now for those ZCPR3 users whose
systems include datestamping, a real-time clock and the extraor-
dinary modem program MexPlus about which I wrote a bit last
time, I have updated my PCP MexPlus script so that it will keep
track of monthly PC-Pursuit time. It stores hours and minutes
temporarily in the ZCPR3 registers; when the computer is turned
off they go into (where else?) shell variable *. VAR files. Thanks
to ARUNZ’ date symbols, the *. VAR files are changed each mon-
th and the time count begins anew.

Those who are interested in this script, or for that matter
anything else about which I write in my columns, may write me
care of TCJ. I'd also be glad to send a copy of the entire
BACKUP.ZEX script, either the generic version or my personal
copy configured especially to take advantage of the extended
graphic and video capabilities of the Qume 102a terminal.

Z younext time... W

Real Computing

(Continued from page 32)

For code references, the process is a little more complicated.
You see, each module has its own code requiring its own static
base to be pointed to by SB. Therefore, each entry in the link
table specifies the module entry and the offset from that module’s
code base (so each module can have mulitiple entry points). This
has to be filled in by the loader. The calling process has to use the
Call eXternal Procedure (CXP) instruction. This instruction saves
the current PC and MOD (module register) on the stack. It then
loads the MOD register from the link table entry, loads the SB
register from the first doubleword of the module table entry, and
loads the PC with the module entry’s code base (third entry) plus
the offset. For example:

.EXTERN PRINTF
JSR PRINTF

The assembler recognizes the call to an external procedure and
allocates an item in the link table. The actual code generated is:

CXp 5

The assembler can simply fill in zero in the link table entry. When
the module is loaded, the system fills in the module table entry
address of the module containing PRINTF (low order 16 bits),
combined with the offset of PRINTF within that module (high
order 16 bits), in the link table entry.

The module which is called must be aware that there are four
extra bytes on the stack. It also must return with an RXP (Return
from eXternal Procedure) instruction instead of a normal RET.
Because any global module might be called by some other
module, any callers within the same module must use the external
mechanism to call the procedure, even though the procedure is in
the same module. There is a small performance penalty associated
with the use of CXP/RXP, so any subroutines not requiring ex-

The Computer Journal / Issue #38

ternal visibility should be coded local (‘‘static’’ in C jargon) and
called with BSR.

Evidently, the loader must be endowed with some intelligence.
It has to keep symbol tables listing the global symbols of the
various modules in each task image, including that of the
operating system. In the MMU environment, tasks cannot call
modules in other task images, but if the symbol tables were kept
along with the modules, the OS could conceivably allow modules,
such as run-time libraries, to be shared. Care would have to be
taken to ensure that such modules were reentrant, either by
avoiding static variables or by using semaphores or other such
techniques.

Interesting, isn’t it? Describing a feature of the NS32 hardware,
I moved seamlessly into how the operating system should make
use of it. This just shows one of the ways that the NS32 architec-
ture has been intentionally designed to make software easier to
write. How different from the Intel and Motorola architectures,
where the programmer must wrestle with the processor to get
around its “‘features’’!

One problem shared by all architectures in generating
relocatable code is the use of address constants within programs,
for example, within initialized data. The usual (and ugly)
mechanism for handling this problem is to use a bit map for the
module, with a bit set for each location which needs to be
relocated in some way.

Next time

Next time we’ll examine the 32532, the highest-performance 32-
bit microprocessor available. We’ll also look at the 32CG16, a
version of the 32016 with high-performance graphics commands
built right into the instruction set. And we’ll check in on our har-
dy band of operating system writers. Until then, may your core
not dump and your process not zombie. Ml

31

Real Computing

The National Semiconductor NS32032

by Richard Rodman

- The PC of the 90s

The personal computer today has reached a technical plateau,
much like the plateau achieved in 1980 with the Z-80, 64K RAM,
and CP/M. Like back then, though evolutionary schemes exist,
these cannot succeed. Why not? The defining standard is 8088
and 640K RAM, and that standard cannot be discarded without
complete industry-wide agreement. Such agreement has never
happened and will not happen. Instead, a single leader will design
a machine that is so much better that people will abandon the old
machine for the new.

The defining characteristic of such a machine is that it uses vir-
tual memory, so that the machine can run any programs for it
regardless of how much memory is installed. Likewise, it should
inherit the characteristics of previous machines, that all software
should run regardless of what kind of graphics, keyboard, disk
drives et al. are installed.

Secondarily, we would expect that the machine should be
multitasking. At a minimum, the user should be able to ‘set
aside”” what he is doing to do something else, then pick up where
he left off.

One would expect a graphical user interface that would allow
the “‘set aside’’ operation to be implemented as a ‘‘collapse to
icon’’-type of action. It would not, however, be Macintosh-like.

A mostly unrecognized problem with today’s PCs is their boxy,
clutzy, cheap and inelegant cabinetry. The next generation
machine has got to fit in better, both in office decor and in the
home. It ought to look like a stereo.

Further, it ought to interface well with what the user already
has. It ought to have audio in and out with phono jacks, connec-
tions to telephone lines, and video in and out jacks. Personal
computers have been moving in the direction of more and more
exotic video monitors and interfaces, which is the wrong direc-
tion, especially for home computers. The new machine should
feature high-quality composite video with anti-aliasing, good gray
scales, full interlace, usable with VCRs, and built-in genlock.
They ought to tie in with the user’s video and audio equipment.

The RS-232 connections should follow today’s trend of using
modular connectors. Unfortunately, there is no standard for
these connections. 1 propose using 6-pin connectors with sym-
metric connections so that data cables would always be ‘‘crossed’’
and anything could be connected to anything:

Pin 1-Handshake out (DTR)
2-Data In
3-Ground
4-Ground
5-Data Out
6-~Handshake in (DCD)

What do people love to control their VCRs, TVs and CD
players with? A mouse? A trackball? No, they use a handheld in-
frared keypad. Similarly, while the graphic interface could allow
the use of a mouse or trackball, the basic control should be
through a handheld infrared keypad. If you’re seated at the com-

32

puter, you can use the keyboard or a small wire-connected
keypad.

The use of a keypad does not preordain simple numeric menus.
No, even on a Macintosh screen, there are only so many items
which could be selected, so many actions which can be perfor-
med. The interface can be done much more simply and cleanly
than that of a Macintosh.

I suppose the real danger in making computers that easy to use
is that the machine will be a commodity item, and we’ll be
flooded with machines from Korea and Singapore, but the real
challenge in this machine will be in making the software so clean
and fluid that its operation will be ‘‘noiseless’’ and ‘“colorless’’.
The simplicity of operation will conceal considerable complexity.

The NS32 Module Table and External Addressing Mode

One of the most interesting features about the NS32 processor
is the built-in support for dynamic binding, that is, linking of
multiple modules at run-time. It does this by means of a module
table.

The module table must be located in the first 64 kbytes of
memory. Each module in the system has a 16-byte entry in the
table. This entry is called the ‘“‘module table entry’’; the module
table entry of the currently executing module is pointed to by the
MOD register. Since the MMU can page this memory, the actual
table can be much larger, but there is an absolute ceiling of 16,384
module entries per task image.

When a module is loaded, a module table entry is created, and
the entry’s first three doublewords are filled in with (1) the ad-
dress of the module’s static base, or data segment; (2) the address
of the module’s link table; and (3) the address of the module’s
code base, or code segment. The object code itself should always
be coded to be address-independent, so that static data references
will be relative to the SB (static base) register, and code references
relative to the PC (program counter).

But what about references to symbols in other modules? This is
what the link table is for. Each link table entry is a single
doubleword.

For data references, the assembler generates a reference to a
link table entry. When the module is loaded, the loader fills in the
actual address in the link table entry. The object code instruction
then performs an indirect reference through the selected link table
entry. For example, let’s say there is a buffer called BUFFER
somewhere in the system. The programmer codes:

.EXTERN BUFFER
ADDR BUFFER, RO

The assembler recognizes this and allocates an item in the link
table. The actual code generated is:

ADDR O(EXT(4)),R0

The assembler can simply fill in zero in the link table entry. When
the module is loaded, the system fills in the address of BUFFER
in the link table entry.

(Continued on page 31)

The Computer Journal / Issue #38

ZSDOS

Anatomy of an Operating System
by Harold F. Bower and Cameron W. Cotrill

Harold F. Bower, Major, US Army Signal Corps; BSEE,
MSCIS, Ham (WAS5JAY), avid homebuilder (starting with 8008
running SCELBAL).

Cameron W. Cotrill, Vice President, Advanced Multiware
Systems; specialist in “‘impossible’’ real-time hardware and sof-
tware systems.

In the first part of this article, we presented the philosophy and
the features of ZSDOS (Z-System Disk Operating System). In this
portion, we will summarize the performance of ZSDOS, share a
few of the tricks we used to shoehorn all these features into 7
bytes, and give a few programming examples showing how to use
some of the new features of ZSDOS and ZDDOS.

ZSDOS Performance.

Measuring the performance improvements of ZSDOS is a com-
plicated matter. During development, an entire suite of tests was
run on ZS/ZDDOS in various configurations in an attempt to
validate the design tradeoffs. The most revealing tests of BDOS
_differences turned out to be a series of assemblies done under con-
trol of a command script. This should be no surprise as assemblies
are by nature disk intensive.

To reduce the perception that our results are ‘‘tailored’ or
skewed in favor of a particular system or configuration, different
processor chips (Z80 and HD64180), different BIOSes
(MicroMint, XBIOS, Ampro), and different media (RAM disk,
Hard Disk and Floppy disk) were used in the timed runs. Since the
results were most affected by the media, results are shown in the
categories of RAM, Hard Disk and Floppy Disk performance. No
form of file date stamping was done since ZSDOS would have a
distinct advantage in this field.

Three sets of hardware were used in these analyses in an attem-
pt to minimize the effect of any unique processes in a given system
from skewing the results. The first system (System 1 in the timing
runs) was a ‘‘stock’’ MicroMint SB-180 operating at a 6.144 MHz
clock speed. System 2 was an Ampro Little Board 1A with a Z80
running at 4.0 MHz, and System 3 was a homebrew Z-180 system
designed to be compatible with the SB-180 operating at 9.216
MHz. Complete information on each system is given in the Ap-
pendix.

Operating Systems.

CP/M 2.2. Gary Kildall and Digital Research developed this
operating system for 8-bit processors in an evolutionary process
on early 8080-based computers. A subsequent product, CP/M
Plus (also known as CP/M 3) is still in limited use, but has not
gained the wide acceptance of the earlier release. CP/M 2.2 is
coded in 8080 assembly language and is a non-banked, non-
reentrant single-user, single tasking operating system.

ZRDOS 1.9. Echelon Incorporated released many versions of

The Computer Journal / Issue #38

this CP/M 2.2-compatible operating system over the past several
years. It is coded in Z80 assembly language and will therefore not
execute on 8080 processors. Some additional features were added,
such as one-level reentrancy under user control, and return of the
current DMA address. Later versions (after 1.5) include enhanced
support for hard disk media by not rebuilding the allocation bit
map on a disk relog command. Version 1.9 added larger disk and
file sizes. Like CP/M, it is single-user and single-tasking.

ZSDOS. This is the topic of this article, with details and
descriptions of features contained in Part 1. ZSDOS is coded in
Z80 assembly language and is also a single-user, single-tasking
operating system capable of single-level reentrancy.

Since this report was an aimed at formalizing an evaluation of
the performance characteristics of ZSDOS, a number of different
variants to the above operating systems were initially timed.
Because the performance of these systems was very similar to
others in the test, their comparative results are simply summarized
below.

CP/M 2.2 with Plu*Perfect Systems’ PUBlic patch. Only
minor differences in performance from the basic CP/M 2.2 were
noted, so results of the patched system were not included in the
final results.

ZRDOS 1.2. The performance of ZRDOS 1.2 was very close
to CP/M 2.2, being a couple of percent slower in the majority of
cases. It was therefore not included in the final timing analyses.

ZRDOS 1.7. Timing tests indicate no significant performance
differences between ZRDOS 1.7 and 1.9.

ZDDOS. Since ZSDOS and ZDDOS are largely the same code
and since comparative timings between them show less than a 1%
difference, only times for ZSDOS will be presented.

BASIC I/ Systems (BIOSes).

MICRO MINT, SB-180. While MicroMint currently ships Ver-
sion 3.2 with their systems, a slightly modified version of 2.7 was
used in these timings on the SB-180. The changes included in-
dependent step rates for floppy drives, different floppy formats
and fixing of eight-inch drivers as well as a slight amount of op-
timization. Little performance difference from the standard BIOS
should be noticed. A 54k system size was used. The BIOS uses
programmed I/0 on most peripherals with DMA functions of the
64180 processor used for Floppy and RAM disk data movement.

XBIOS, SB-180. XSystems’ XBIOS version 1.1 is an extremely
powerful and flexible banked system with excellent tools and in-
terfaces. Malcom Kemp has concentrated on providing functions
in this release, and has deferred optimization to future releases.
XBIOS fully supports the ETS180 IO + board, allows complete
configuration of peripherals, and provides a larger TPA since
only a small kernel resides in the primary memory area. Most of
the BIOS code resides in an alternate memory bank. XBIOS in-
stalls the largest possible TPA when used which was 57.5k for
these tests. XBIOS was installed with three buffers for disk 1/0.

33

AMPRO, Little Board-1A. A stock version of the Ampro ver-
sion 3.8 BIOS assembled with no ZCPR support was used for
testing. A system size of 59k was chosen to provide support for §
hard disk partitions spread over two physical drives. NZCOM was
then loaded to provide Z-System support. The Ampro BIOS is
strictly a polled system and uses no interrupts or DMA.

Evaluation Procedures.

Since the goal of evaluating performance was to heavily exer-
cise BDOS functions, a set of fourteen assembly modules, thir-
teen of which were 2 to 4k in size, and one of 6k were assembled
to produce Microsoft REL files. To restrict external influences,
no file date stamping was used, and many ZSDOS features such
as Public and Path were disabled. On the other hand, to provide a
semi-realistic setting, ZEX.COM and the executable assemblers

. were placed in a different Drive/User with the ZCPR search path

set to locate the files on the second directory scan. SLR’s SLR180
assembler was used on system 2, while tests on systems 1 and 3
used Z80ASM +. Assembly was done under the control of a
memory-based SUBMIT utility (ZEX Version 3.1A) script file.
Times were measured from the carriage return terminating the
command invoking the ZEX file to display of the ‘‘Done”’
message after assembly of the last file. After each run, the .REL
files produced by the assembly were erased so that the same disk
space could be used in the next run. No other files were added or
deleted to any media during the timing runs. At least three runs
were performed for each configuration, and the results averaged.
Timing was manually performed with a stopwatch.

Due to the radical differences in access times for different
media, three categories of times were considered; RAM disk,
Hard Disk, and Floppy disk. If you think you know how each
system fared, read on—there may be a twist or two in the plot.

RAM DISK

The Ampro has no RAM disk, so timings in this category
reflect only the SB180. The SB180 computer is equipped with
256k of memory. The standard MicroMint BIOS divides this into
a 64k main memory area and a 192k RAM disk. With XBIOS as
tested here, 64k is allocated for the main memory, 24k for the

.banked portion of XBIOS, buffers and banked system exten-

sions. The remaining space is available for a RAM disk. RAM
disks on the SB180 use built-in DMA capabilities of the HD64180
processor to move ‘‘sectors’’ of data rather than the slower block
move instructions used by Z80 systems.

Exiting a program via the Warm Boot vector in CP/M relogs
the A drive. To minimize time penalties imposed by this, a Hard
disk partition was defined as the A drive. Needed programs as
well as the assembly modules were placed on the RAM disk (M:),
with ZEX.COM and Z80ASM + .COM placed in User 15 and the
sources files in User 0. The search path for this phase was: Drive
M, User 0 to Drive M, User 15.

Since the RAM disk is defined as a non-removable media in the
Disk Parameter Block, the ‘‘Rapid Relog”’ feature of ZSDOS and
ZRDOS was expected to produce much shorter execution times
than CP/M for this series of measurements. As can be seen from
the results, this was indeed the case. The raw timings in seconds
with percentage changes from the shortest time are:

ZSD0S ZRDOS 1.9 CP/M 2.2

BIOS 2.7 17.0 (---) 17.1 (+4%) 36.4 (+114%)
XBIOS 1.1 14.2 (---) 14.5 (+2%) 34.5 (+144%)

The effects of the Rapid Relog feature were borne out, with
ZSDOS being a couple of percent faster. Disabling the Rapid
Relog feature of ZSDOS produced nearly identical results to
CP/M, so most of the additional time for that system may be at-
tributed to rebuilding the disk allocation bit maps for Drives A
and M on each warm boot.

Hard Disk

Three systems, 6.144 MHz SB-180 (System 1), 4.0 MHz Ampro
Little Board-1A (System 2), 9.216 MHz Z-180 Homebrew SB-180
(System 3), were used to gather information for this phase. This
latter system was added to demonstrate performance on a heavily
loaded system.

ZSD0S ZRDOS 1.9 CP/M 2.2

1-BIOS 2.7 0:54.7 (=--) 1:16.6 (+40%) 1:34.7 (+73%)
1-XBIOS 1.1 0:52.2 (---) 1:15.4 (+44%) 1:33.4 (+79%)
2-AMPRO 1:55 (-=-) 2:44 (+43%) 3:15 (+70%)
3-BIOS 2.7 1:07.7 (-==) 1:40.6 (+49%) 1:50.2 (+63%)
3-XBIOS 1.1 1:29.5 (---) 2:06.4 (+41%) 2:11.3 (+47%)

As in the previous RAM Disk results, the results of ZSDOS
with ‘‘Rapid Relog’’ disabled and CP/M were nearly the same
confirming that rebuilding the allocation bit maps on a disk relog
is the principle cause for the increased CP/M times.

All reported times were made with a path which forced a search
of the current directory before locating executable files on the
second path element. As an experiment, the path on the Ampro
system was changed to go directly to A2:, eliminating the current
directory scan. All DOSes showed an identical 10 second speedup,
indicating directory scan time for all DOSes was the same.

A further point to note is the effect of multiple disk buffers on
performance. For system 1, the number of buffers was adequate
to retain directory information which improved performance over
the single-buffer Micromint BIOS by 1 to 5%. In system 3, the
buffering was inadequate to retain necessary information, so the
multiple buffers were of no benefit.

Floppy Disk

Examination of system performance on a Floppy Disk system
was tailored to duplicate, as closely as possible, a hypothetical
operating configuration using multiple drives with non-trivial
search path along differing Drives and User area lines.

Since all three primary operating systems of interest to this
analysis (ZSDOS, CP/M 2.2 and ZRDOS 1.9) rebuild removable-
media disk allocation maps on a relog, there was no need to ex-
plicitly disable the ‘‘Rapid Relog’’ feature of ZSDOS for this por-
tion of the study. Results are:

ZSD0S ZRDOS 1.9 CP/M 2.2
BIOS 2.3 2:18.7 (+28) 2:22.4 (+5%) 2:16.0 (~-=)
XBIOS 1.0 2:29.5 (+0.5%) 2:32.7 (+3%) 2:29.0 (---)
AMPRO 2:26 (+1%) 2:28 (+2%) 2:25 (---)

Since all of the operating systems are functionally identical in a
Floppy Disk configuration, we did not expect large differences in
measured times. We were therefore not surprised with variations
over a spread of only five percent. While we strove to make
ZSDOS as efficient as possible, CP/M was still the champ on
floppy systems by a nose.

As a final comparison test between the three DOSes, the
amount of time WordStar 4 took to *QC and ~QR through the
92k ZSDOS source file was measured under all three DOSes. All
timings were within 1%, indicating that read/write to open file
times were similar.

Performance Conclusions

ZSDOS offers significant improvements in system performance
on CP/M 2.2 compatible Z80-compatible computer systems with
fixed media even under the restricted test conditions which
disabled some of the most powerful features of ZSDOS. Even
more impressive results may be obtained in a ‘‘tuned’’ installation
with such features as Public files, and proper selection of the DOS
search path (improvements of 9% on a hard disk system are
typical).

The other major conclusion that can be drawn from this effort
is that the selection of a BIOS tailored to the requirements is

The Computer Journal / Issue #38

crucial to achieving optimum performance. The multiple buf-
fering capability of XBIOS offers speed increases in systems
where an adequate number of buffers exists, but degrades floppy-
based and heavily loaded hard disk performance.

During the data gathering for this report, an anomaly was
noted with respect to CP/M Plus (or P2DOS) stamps. System #1
was initialized for P2DOS stamps on the disk holding data files to
quantify the differences. In all cases ZSDOS was affected less
than one percent, yet ZRDOS increased to seven percent longer
than ZSDOS on RAM disk, 20% longer on floppy and 144%
longer on hard disk. CP/M 2.2 was similarly affected, but to a
lesser degree, increasing times over ZSDOS to 115% on RAM
disk, ten percent on floppy and 140% on hard disk. While neither
ZRDOS nor CP/M 2.2 can manipulate this type of stamp, merely
using a disk which is so prepared will result in slower processing.

How We Did It

During the year or so that we pursued our independent paths in
modifying H.A.J. Ten Brugge’s excellent P2DOS alternative to
CP/M 2.2’s BDOS, our approaches were somewhat diverse.
While Cam’s approach was directed at perfecting features, Hal’s
effort was directed at streamlining the code to create a ‘‘speed
demon”’ operating system, and Carson concentrated on enhan-
cing embedded Date Stamping. In mid-1987, Bridger Mitchell was
instrumental in getting us to pool our resources and collaborate in
a joint venture. The results have been more than worth it. In Part
I, we described the functional enhancements and standards em-
bodied in ZSDOS, and have just shown the performance im-
provements compared to CP/M 2.2 and ZRDOS 1.9. In our ef-
forts to foster better code for our 8-bit systems, we would now
like to describe how the task of adding features and decreasing
execution time was accomplished without increasing the
Operating System memory requirements.

The topic of code optimization is a controversial one. In the
early days of computers, programmers were saddled with small
memory space and slow processors, so every effort was made to
optimize programs for speed and size. As memory became
cheaper and processors emerged with ever increasing clock
speeds, programming techniques became lost to all but a few.
This same path of evolution has also been followed in the Per-
sonal Computer field.

To demonstrate this point, first compare the 3.5 kbyte CP/M
2.2 BDOS and the 1 kbyte Plu*Perfect DateStamper to the fun-
ctionally superior 3.5k ZDDOS. Next, compare the 3.5 kbyte size
of CP/M 2.2 and ZSDOS to the 16 kbyte size of the functionally
similar MS-DOS 2.1. To carry the point further, contrast the
almost 16 kbyte COMMAND.COM to the 7 kbyte size of a more
capable ZCPR3 Command Processor with a full environment.
Some of this bloat is understandable with the change in processor
chips. On the other hand, the more powerful instructions of 16-
bit 808x processors should have counteracted a good portion of
this code bloat.

In line with the size comparisons, execution speeds also suffer
with the larger code. Friends and co-workers who are used to
working with PCs and clones operating at 4.77 and 8 MHz clock
rates are constantly amazed at the speed of even a lowly 4 MHz
ZSDOS system, and dazzled at the 6 and 9 MHz Hitachi 64180
systems running the same software! While much of this is subjec-
tive, quite a bit is due to the fact that the ‘‘smaller’’ 8-bit code has
been hand-coded and optimized, whereas the PC arena is
devoting more of its energy to coding in high-level languages. This
makes sense under certain circumstances (e.g. during develop-
ment and for long-term maintainability), but it most certainly
does NOT make sense for operating systems where size and speed
are of the essence.

Since all of our efforts have been directed at the Zilog Z80 and
compatible family of microprocessors (including Hitachi’s 64180
and National’s NSC800), the optimization steps covered here ap-
ply directly only to these. Having stated that, we also need to

The Computer Journal / Issue #38

point out that many of the basic concepts will still apply to other
processors, although details may differ.

No matter what processor is used, the goals of faster program
execution and smaller memory size are in conflict. Smaller
memory size normally means using each section of code as many
times as possible—typically by using many subroutines. Faster
code execution often means avoiding as many subroutine calls as
possible. In every program undergoing optimization, the conflic-
ting size and speed requirements must be balanced. This balance
can be highly subjective. In ZSDOS, code size was the primary
concern though significant effort was given to making the smaller
code run as fast as possible.

Now for the minutiae. If you are not a programmer, Or are in-
terested only in how to use ZSDOS, you might want to skip to
PROGRAMMING FOR ZSDOS. For the diehards—here it is!

One of the first techniques we used in optimizing code was to
examine all JUMP instructions. The basic instruction is three
bytes long and executes in 10 clock cycles on a Z80. These ab-
solute jumps may be unconditional (JP addr), or conditional (JP
C,addr) based on the contents of the Carry, Zero or Parity/Over-
flow flags. The Z80 also features a two-byte Relative jump (JR)
which also may be absolute (JR addr), or conditional (JR C,addr)
based on the Carry or Zero flags. The relative jump is only two
bytes long and may branch only to addresses within the range of
+127 to — 128 bytes of the jump instruction. While it is relatively
casy to blindly change all jump instructions within range to
Relative jumps, the careful programmer will also note that the
Relative jump may carry a time penalty. The absolute relative
jump, and conditional jumps where the condition is satisfied (the
jump is taken) require 12 clock cycles compared to the long jump
consuming only 10 cycles regardless of condition. On the other
hand, conditional relative jumps need only 7 cycles if the con-
dition is false. This type of optimization was one of the first used
in our efforts to enhance P2DOS.

The next simple optimizing technique we used was to make
maximum use of the Decrement-B and Jump Relative if Not Zero
(DJNZ) instruction. This two-byte sequence executes in 8 or 13
clock cycles (B=0 and B<>0 respectively) for an absolute time
and code saving over separate decrement/jump sequences. In
some of our work on ZSDOS, using this instruction required
redefining register usage to free up the B register for use as a
counter.

Another simple optimizing step was examining the use of the
IX register. IX holds the argument passed to DOS in the DE
register (typically a file control block pointer). Despite having this
value available all the time, there were a significant number of
cases when faster and/or shorter code was produced by moving
the pointer into HL. This was normally the case when the same
offset within the FCB was accessed two or more times in suc-
cession.

The final ‘‘simple”’ optimization technique we used was to
examine all PUSHes and POPs to the stack and delete any found
to be unnecessary. While this sounds simple, it is quite a chore in
a complex program such as ZSDOS where CALLs call other
CALLs which call still other CALLs, etc. Each path must be
examined to insure that the registers are, in fact, not altered or
needed.

After the above ‘‘simple’’ optimizations were performed, A
series of what we term ‘‘moderate’’ optimization steps were un-
dertaken. One of these involved examining all series of sequential
checks on a byte (such as the input command character scanner)
and structure the check sequences to optimize performance based
on clock cycle counting mentioned above, and estimated frequen-
cy of access for various commands. In the case of the command
dispatcher, this technique resulted in extremely fast command
parsing implemented with minimum code.

Sequential bit shifts and rotates are another area where more
analysis is required before final code can be written. Sixteen-bit
shifts, and 8-bit shifts in registers other than the accumulator are

35

areas where gains can be achieved. The usual method of using a
subroutine which loads all bytes to the accumulator for shifts and
rotates fares poorly if only one or two bit shifts are needed. While
most of these cases had been removed from the P2DOS code by
the original author, the replacement inline code still suffered from
some inefficiencies. A two-bit shift right (division by 4) of the 16-
bit HL register pair in the STDIR routine using the code:

SRL H ; Divide bs 2
RR L
SRL H ; Divide by 4
RR L

proved optimum. Using a two-iteration loop with the DIJNZ in-
struction around a single SRL H, RR L sequence would have
produced the same 8-byte code length, but at a penalty of 21 clock
cycles. A call to a subroutine would have fared even worse with a
27 clock cycle CALL/RET penalty, and four bytes of overhead.
On the other hand, three-bit shifts of the HL register pair oc-
curred in a number of routines. These were consolidated into a
single callable routine that uses the B register as a counter in an
iterative loop with the sequence:

SHRHL3: LD B,3
SHRHLB: SRL H

RR L
DJNZ SHRHLB
RET

While the replacement code added overhead, it saved 3-5 bytes
of code (depending on entry point) which were sorely needed to
add additional features. ZSDOS calls this routine from three
places, while ZDDOS calls it from five. The difference is due to
ZSDOS ““unrolling”’ the loop in time critical routines.

Shifts to the left were occasionally handled a little more ef-
ficiently by using the 16-bit ADD instructions of the HL register
pair to perform bit shifts. An example of this appeared in the
CALST routine. In this case, the DE register pair was rotated one
bit to the left with sequential RL E, RL D instructions, with the
Carry bit shifted into the HL register pair. Where the original
code used the sequence: RL L, RL H to shift the bit into the HL
pair, a two byte code savings was achieved with the single two-
byte ADC HL,HL instruction.

Another area where considerable code and time savings were
realized was in the consolidation of routines into ‘‘straight-line”’
code. While this seems to be an anathema to structured
programmers, it is often a must to obtain the performance im-
provements which we sought from our efforts. As a first step, all
routines ending in Jump instructions were examined. Target ad-
dresses were then checked to insure that no other routine “‘fell
through”’ to them. If it was in fact a ‘‘stand-alone’’ routine, it
was moved to the end of the first routine so that the Jump could
be deleted. An example of this is where the INITDR routine was
moved to follow SELDK directly saving the two-byte relative
jump and 12 clock cycles. Other cases involving long jumps saved
three bytes and 10 clock cycles. A minor variation in relocation of
code is to group functions to bring them within range of relative
jumps thereby saving one byte at the expense of two clock cycles.
This minor penalty in time often outweighed the value of a single
byte of code in our efforts.

A variant on this concept involved examining sequences of code
for duplicity, and combining identical sequences into new
routines which ““‘fall through’’ to the destination. This was amply
used to define a new routine:

SRCT15: LD A,15
CALL SEARCH
This sequence was placed immediately before the TSTFCT
routine, and replaced three occurrences of:

1D 4,15
CALL SEARCH
CALL TSTFCT

36

with a single CALL to SRCT15. The overall effect of this one
change was a savings of 10 bytes of code and 24 clock cycles for
each of the three sequences replaced.

Detailed examination of code also produced unexpected
savings by merely defining new labels. As an example, the last
three instructions of the routine OPENEX were:

1D A,OFFH
ID (PEXIT),A
RET

This sequence occurred two other tiines in the original code,
and three times in the latest version of ZSDOS. The last two in-
structions were repeated in many locations, so one location was
selected (centrally located to take advantage of relative jumps),
with other instances accessing it with a call or jump to the new
label, SAVEA. Setting the value to OFFH in OPENEX was
labeled as SETCFF, and the other two occurrences jumping to
this location. While a small time penalty was incurred in jumping
to this common code, the three byte savings was again needed to
add features.

Our code ‘‘walk-throughs’’ and optimization efforts did not
stop with the original code, but continued with every test version.
First, we discovered a common “‘shell’’ of instructions around the
DELETE, CSTAT, and RENAME functions and combined them
with a net savings of 12 bytes. Later, a trick used in public-
domain inline print routines to pass addresses on the processor’s
stack was used to recover five bytes of code by replacing three
sequences of:

LD HL,(address)
JR COMCOD

with three 3-byte CALL COMCOD instructions. The trick in-
volved in this change was to place the CALLs immediately in
front of the routines whose addresses were to be passed to COM-
COD. When executed, the CALL placed the routine address on
the stack. A one-byte POP HL instruction at the beginning of
COMCOD completed the change by placing the address in the
desired HL register. Still later, the internal code in the COMCOD
routine was again optimized to remove several memory referen-
ces. This saved another four bytes.

Cameron’s rewrite of the Console 1/0 routines demonstrated
another technique of reducing code size with very little overhead.
The majority of affected code involved different DOS comman-
ds, yet exited through common code with absolute jumps. By
PUSHing the exit address on the stack prior to jumping to the
routines, a simple RETurn instruction sufficed to direct execution
through the exit code saving two bytes per occurrence. The four
bytes required to set the return address meant that the code size
break-even point occurred at two instances. Since far more cases
than that were involved, a significant code size reduction was
realized. For DOS function calls, the time penalty incurred was 21
clock cycles, however, that was not considered significant when
dealing with the normal serial 1/O devices used in console fun-
ctions.

A final noteworthy trick was added by Cameron which neither
of us had ever seen documented in the Z80 world. It used the six-
teen-bit load instruction into the IX register (a four byte instruc-
tion) to “‘fall through’’ successive 16-bit loads to the primary
registers. In this fashion, the sequence:

CMND27: LD HL, (ALV)
JR SAVHL

CMND24: 1D HL, (LOGIN)
JR SAVHL

CMND31: LD HL, (IXP)
JR SAVHL

CMND47: 1D HL, (DMA)

SAVHL: ID (PEXIT),HL
RET

The Computer Journal / Issue #38

was replaced by a more efficient (in code size) construct. The
bytes, as coded, are on the left, with the instructions seen by
CMND?27 shown on the right:

CMND27: LD HL, (ALV) CMND27: LD HL, (ALV)

DEFB ODDH ID IX,(LOGIN)
CMND24: LD HL, (LOGIN)
DEFB ODDH ID IX,(IXP)
CMND31: LD HL, (IXP)
. DEFB ODDH 1D IX,{DMA)
CMND47: 1D HL, (DMA)
SAVHL: LD (PEXIT),HL LD (PEXIT),HL
RET RET

This code works because the IX register is not used in the
remainder of the exit code, and the entry IX value is restored
upon returns from ZSDOS functions. Each cascaded value saves

_one byte of code, but adds additional clock cycles to the execution

time. Where the original code required a constant 28 clock cycles
before arriving at the SAVHL routine, the new code execution
time is different for each entry point. In this example, the time (in
clock cycles) required for each entry point to arrive at SAVHL is:

CMND47 16 cycles

CMND31 20 + 16 = 36

CMND24 - 20 + 20 + 16 = 56
CMND27 - 20 + 20 + 20 + 16 = 76

At this point, an analysis of probable calling frequency was
done to order the calls so that the most frequently used functions
would incur the least penalty. The ordering shown here was
judged to be the optimum sequence.

In a similar manner, eight-bit loads of the A register were con-
solidated at the beginning of the SEARCH routine. Our analyses
of the code showed that SEARCH was called several times with
values of 12 and 15 in the A register. Loading of these values was
relocated to the beginning of SEARCH, then consolidated with
another single-byte DEFB prefix. The resultant code as entered,
and as seen by SEAR12 is:

SEAR12: 1D A,12 SEAR12: 1D A,12
DEFB 21H 1D HL,0F3EH

"SEAR15: LD A,15

SEARCH: ... SEARCH: ...

Instead of posing a time penalty as the LD IX,nn trick
described above, this case saved one byte over a relative jump and
two clock cycles (JR = 12 cycles, LD HL,nn = 10 cycles). As
above, this worked because the HL register contents were ‘‘don’t
care’’ upon entry to the SEARCH routine.

These techniques are very powerful when code size is at a
premium. Any sequence of code that loads a register or register
pair then jumps or calls a common routine is a candidate for this
technique. You need a register pair to throw away, but this is
usually easy to find.

The final case of optimization is the most difficult, and in-
volved complete logic redesigns. This area is so specific and
lengthy that it will not be covered here. As so often stated in tex-
tbooks, it is ““left as an exercise for the reader’’ to examine the
original P2DOS source and identify areas which can be
redesigned. Much logic redesign was required as a part of the ad-
ded ZSDOS and ZDDOS features, though the effort didn’t stop
there.

Just as important as what we did to gain speed and reduce size
is what we didn’t do. P2DOS originally used some self modifying
code in the error printing routine. We decided from the outset
that we would avoid this practice (tempting though it is. . .) in or-
der to produce code that could be ROMed and/or run on the
7280 in protected mode. This decision cost us several bytes of
code, but allowed us to accomplish our goals.

The Computer Journal / Issue #38

Programming for ZSDOS

ZSDOS places a few restrictions on systems which do not exist
in other CP/M compatible operating systems. The most
significant is that the BIOS MUST NOT DISTURB THE IX
REGISTER. So far, the Epson QX-10 and Zorba computers have
been identified as having BIOSes that corrupt this register. With
NZCOM, we have developed a ‘‘protective’” NZBIOS (look for
ZSNZBI12.LBR on most Z-Nodes) that shields the Z80 registers
from ill-behaved BIOSes, but operation without NZCOM on such
systems will require that the BIOS be re-written.

On this topic, we would like to propose that all programmers
observe register usage more closely. The Z80 alternate and index
registers belong to APPLICATION programs, and must be
preserved by all operating system components. On the other
hand, the “I’’ and ‘‘R’’ registers, as well as all new 64180 and
Z280 registers (with the exception of the Z280’s SSP) belong to
the BIOS since they are hardware specific and directly 1/0
related. The Z280 SSP should be reserved for BDOS use.

Before trying to access any of the expanded ZSDOS features
discussed in the last issue, you should first insure that the program
is in fact executing under ZSDOS. This is a two-step procedure
involving a call to check for CP/M 2.2, then a call to the ZSDOS
Return Version function. By checking in this manner, your
program will be able to identify CP/M 1, 2 and 3 (aka Plus) as
well as ZSDOS, ZDDOS and ZRDOS. Code to accomplish this
task is:

LD C,12 Return CP/M Version

CALL 0005 ..via BDOS

CP 30H Is 1t CP/M Plus?

JR NC,ISCPM3 ..Jump if so

CP 20H Is it CP/M 1.x?

JR C,ISCPM1 ..jump if so w/version # in A
CP 224 Is 1t CP/M 2.27

JR NZ,BADVER ..Jump to unknown 2.x version
LD C,48 Now make the extended call

LD A,H Check the DOS type first
CP D! Is it ZDDOS?
JR Z,ISZD .. jump if so, Ver # in L
Ccp 'St Is it ZSDOS?
JR Z,IS8ZS ..jump if so, Ver # in L
OR A Is it ZRDOS?
JR Z,ISZR .. Jump if so, Ver # in L

i
H
3
H
H
H
H
H
i
CALL 0005 3 ..via BDOS
H
;
3
;
H
H
H
H

Else can't ldentify, do error

Bridger Mitchell’s Advanced CP/M column in TCJ #36 also
provides sample code to perform this function. A slight variation
on the above sequence is used in utilities provided with ZSDOS to
enable them to work under a variety of different operating
systems. We propose that this technique be used for any future
Disk Operating systems by returning a different unique character
in the ‘““H’’ register.

Many programs in the past have relied on unpublished
locations within the BDOS to alter the performance or fun-
ctionality of the system. With ZSDOS, we provide published
‘‘standard’’ ways to dynamically tailor DOS parameters. The
most important way of accomplishing this is with a set of con-
figuration bits, or flags. To accommodate future expansion, a
word value of sixteen bits is defined with only the lower seven
used in the current 1.0 release. The Flag bits used in ZSDOS 1.0
are as shown in Figure 1.

The cited function is activated by setting the respective bit to a
“1”’, and disabled by clearing the bit to a “‘0’’. Since ZDDOS has
no search path capability, the features marked with an asterisk
pertain only to the full ZSDOS configuration, and are ‘‘don’t
care’’ bits in ZDDOS. The bits will be returned as the lower byte
in the 16-bit word field in the “‘L’’ register. Code for returning
them is:

37

Figure 1: The flag bits used in ZSDOS 1.0.

DD
32
A \ _Public File Access
NV VAV \ \ _Publie/Path Write
N V'V A\ \ __Read-Only Disk
A\ \ \ _ Fast Fixed Disk Relog
A\ \ \ _ Disk Change Warning

DD
76
\

- 0

DD
10
\

o

\ \ ___BDOS Search Path *
\ ___ Path w/o SYS Attribute *
___ (Reserved)

APPENDIX: The hardware used in these analyses is:

System #1: MicroMint SB-180@.

Processor: HD64180 operating at 6.144 MHz clock rate with
No memory wait states and 2 IO wait states.
Console: Serial Consocle connected to ACSI port 1 at 19.2
kbps, Interrupt-driven buffered keyboard input.
Interfaces: ETS180 I0+ providing SCSI interface and RTC.
CCP: ZCPR 3.3 with full environment.
BIOS: MicroMint 2.7 modified / XSystems XBIOS 1.1.
Search Path: $$:, A15: (Current Drive & User, then Al5:)
Hard Disk: Syquest SQ-306R 5 Megabyte removeable-media,

Interleave of 3, 12 microsecond buffered seek,
Adaptec 4019 controller.

A: 1576k of 2552k free, 94 files, 68 in User 15.
B: 2432k of 2568k Free, 17 files, 16 in User 1.
A: NEC 8@-track DSDD, 4 mS step, 4 mS Head Load,
16k of 782k free, 93 files, 68 in User 15.

C: Shugart SA465 8@-track DSDD, 6mS step, 736k of
782k Free, 17 files in User 1.

Floppy Disks:

System #2: Ampro Little Board 1A.

Processor: Z80A operating at 4.0 MHz.

Console: Serial Console connected to DART port 1 at 9600
baud, hardware handshake enabled.

Interfaces: SCSI daughter board with NCR 5830 driving 1610-4
controller.

CCP: ZCPR 3.4 with full environment.

BIOS: Ampro V3.8/NZCOM.

Search Path: 3:, A2:, AQ: (Current Drive & User, then A2, AD:)

Hard Disks: Seagate ST-225 20 Megabyte, interleave of 2,

200 microsecond buffered seek, Shugart 1610-4
controller. A Shugart 5Mb full height drive was
also connected to the controller, but was not
used in the test.

A: 2744k of 816@k free, 425 files, 77 in User 2.
C: 984k of 4192k free, 258 files, 32 in User 3.
A: Teac 55F 80 track DSDD, 6 mS step, 10k of
782k free, 74 files.

B: Teac 55F 8@ track DSDD, 6 mS step, 736k of
782k free, 17 files in User 0.

Floppy Drives:

System #3: Homebrew SB-180 compatible.

Processor: 7-180 operating at 9.216 MHz clock rate with
No memory wait states and 3 I0 walt states.
Console: Serial Console connected to ACSI port 1 at 19.2
kbps, Interrupt-driven buffered keyboard input.
Interfaces: ETS180 I0+ providing SCSI interface and RTC.
CCP: ZCPR 3.0 with full environment.
BIOS: MicroMint 2.7 modified / XSystems XBIOS 1.1.
Search Path: Al5: (ZCPR 3.9 searches current, then Al15:)
Hard Disk: Shugart SA-712 10 Megabyte, Interleave of 1,
12 microsecond buffered seek, Shugart 1610-3
controller.
A: 324k of 2552k free, 179 files, 1P1 in User 15.
D: 252k of 2792k Free, 438 files, 16 in User 5.
38

LD C,100 ; Get the FLAGS bits
CALL 0005 ; ..with DOS call
; "'L'' has present 7 bits

Likewise, the flags may be set from applications programs with
Function 101 as:

1D DE, (FLAGS)
1D C,101
CALL 0005

; 1.0 only recognizes byte in E
; Now set flags in ZSDOS

; ».with DOS call

; New settings are now effective

Date and Time capabilities are just as easily accessed. The 6-
byte Clock data may be retrieved to a specified buffer with DOS
Function 98 as:

1D DE,TIMEAD ; Address of 6-byte buffer
LD c,98

CALL 0005 ; Read Clock from DOS

INC A ; Any Errors? (FF --> 0)

JR Z,ERROR ; ..jump if error (no clock?)

; Else use the retrieved time
0,0,0,0,0,0 ; Initialized Null DateSpec

With the File Date Stamping capabilities of ZSDOS, we
developed a single standardized way of accessing individual file
stamps. Function 102 will copy the set of stamps for a specified
file to the current DMA address, while 103 will set the stamps for
the specified file to the values at the current DMA address. Since
all supported stamping methods (currently DateStamper(tm) and
the CP/M Plus compatible P2DOS) feature the same format at
the ZSDOS level, no user conversions are needed. Indeed, using
special stamp drivers provided with the ZSDOS package, either
stamp type may be read with both being written by Function 103
if the destination disk has been so prepared. A sample of code
used to copy stamp data from one file to another is:

TIMEAD: DEFB

1D DE,DSBUF ; Point to 15-byte stamp buffer

LD C,26 ; ..and set the DMA address
CALL 0005

1D DE,SRCFCB ; Source FCB (User set already)
LD C,102 ; Get the source's Stamps

CALL 0005

. ; Set User to destination?

LD DE,DSTFCB ; Destination FCB

D C,103 ; Write Stamps from DMA buffer
CALL 0005 ; ..to Dest file

Final Thoughts

ZSDOS was a labor of love. Though we didn’t really start out
to create such a significant step forward in 2.2 compatible
BDOSes, it turned out that way. It is our hope that the ideas
presented in ZSDOS will form the basis for the next generation of
BDOS replacements. If nothing else, we hope that ZSDOS
stimulates the Z80 compatible community to address the issues of
standards for datestamping, enhanced error handling, and global
file access.

The next step for an improved operating system will be to break
the 64k barrier. Joe Wright and Jay Sage’s efforts in dynamic
system configuration with NZCOM are very useful, but fail to
address the fundamental problem—we need to use the banked
memory featured in most newer systems. Furthermore, this must
be done in a way that allows existing applications to run properly.
This means (unlike CP/M Plus) a BDOS that lets BIOS deblock,
a BIOS jump table that is directly callable from all banks, system
vectors at the normal locations, etc. This also means establishing
standards for bank sizes and addresses, hardware and processor
independence, and finally universal DOS level and BIOS level in-
terfaces to banked memory. Other standards that will be needed
by the next generation of OSes include banked RSX standards

The Computer Journal/ Issue #38

(though Bridger Mitchell and Malcom Kemp seem to have this
nailed down), banked device driver standards, and expanded
TCAPS and ENYV definitions (aren’t these properly BIOS struc-
tures folks?). Now is the time to come together, speak up on these
matters, carefully weigh all alternatives, and make our wishes
known.

Also, we urge the community to support those doing active
development for our systems by purchasing legal copies of the
" software you use. This will allow and encourage development of

things like a new, better, and faster banked systems with all the

goodies we really want. We applaud the efforts of MicroPro in
developing and releasing WordStar 4 for CP/M systems, and en-
courage other vendors to update their CP/M offerings in the
fields of Database Management systems and Spreadsheets for the
‘new generation of systems. Further, let’s agree to agree on what

. we really want. In this manner, we can all concentrate our efforts
on applications programs, not rewriting BDOS. In short, let’s
work together to create a computing environment that will turn
the big blue clones green with envy.

In conclusion, what started as independent ‘‘labors of love’’ to
produce a better operating system rapidly became identical ob-
sessions as we reverted to counting clock cycles and bytes. We are
satisfied with the results, and hope that others will benefit from
our work and produce smaller, faster and more full-featured
programs to help make our lives easier (and keep from emptying
our wallets with requirements for constant upgrades). Finally, we
must thank H.A.J. Ten Brugge for beginning this entire episode
by releasing P2DOS. Without his efforts, none of us (Cam, Hal
and Carson) would have been tempted into the area of operating
system authorship, and would have left it to ‘‘others”’ to deter-
mine what we need in our respective systems. Wl

Z-System Corner

(Continued from page 20)

DIRNAME:. Under Z34, cither would work. Conversely, if direc-
tory area A3 in the example had a directory name PRIVATE with
password SECRET, Z30 would allow a reference to A3: but
would insist on correct password entry if the reference was made
as PRIVATE:. Again, Z34 always checks the alternate form of
reference, and if either meets the security restrictions, then both
are accepted.

The standard version of Z-System created by NZCOM or
Z3PLUS has the max DU limit set to P31. Thus all directories are
allowed using the DU format. As a result, even when named
directories with passwords are created, they are accepted freely.
In order to create a secure system, the values of max-drive and
max-user must be reduced. Also, since password checking is
bypassed when the wheel byte is set, the wheel byte must be
cleared before the security limits imposed by directory passwords
will take effect. Once those two changes have been made, your
NZCOM/Z3PLUS system is ready to serve as a remote access
system. Wl

Information Engineering

(Continued from page 23)

The Standard Deviation is a measure of how values deviate
from the mean average. The Sample Deviation shows the
variation we might expect from the average by an individual test
score.

Listing 4 shows a PARADOX script which will provide this in-
formation for us. While more mathematical in structure, this
script’s function is more elemental than the introductory scripts.
PARADOX does all the hard work for us.

To begin the script I have sent all the output of the script to the
printer, for later use in preparing reports. Data on the screen
alone is of little permanent use to anyone.

A quick trip through the PAL PROGRAMMER’S GUIDE
shows the format and usage of the function ‘‘CSTD.’’ All it wan-
ts as parameters is the table name and field name to be used in
calculating the Standard Deviation. Listing 4 shows a very sim-
plistic application of statistical functions. Though simplistic, it
does the job well. You do not have to be a PAL programmer to
perform complex functions. The most you need to do is read
Listing 4 into a good ASCII text editor and use its copy command
to make duplicates of the arcas between the markers *‘;+°.
Replace the table name with a global search and replace, the field
name with the field(s) in the data base you need to work with.

Due to the calculations involved, the script can only be used on
numeric fields, and takes a little time to process. The length of
processing time is another reason why I find it best to send a copy
of the output to the printer.

The Computer Journal/ Issue #38

Software Product of the Issue

In connection with some projects for the disabled community,
sponsored by AMPRO COMPUTERS, I received an interesting
integrated software package called T/MAKER. AMPRO was, at
that time, bundling the system with their BOOKSHELF COM-
PUTERS. I was real fond of that package. Sadly, it ran only on
CP/M machines, and my vocation was drawing me into the PC
Compatible arenas. Conversations with T/MAKER’S author
revealed that while he had produced a version of the software for
MS-DOS, it would be marketed overseas, with little exposure in
the United States.

Always on the lookout for good integrated software packages,
I was disappointed that no product was available that came close
to T/MAKER’s power and functionality.

In retooling for the Mobile Information Age, Fearless Leader
brought in a copy of DESKMATE, by TANDY, which he pur-
chased with his laptop computer.

DESKMATE is an interesting system, interesting indeed. It has
a text editor, database or ‘‘filer’’ program, spreadsheet, graphics
‘““‘draw’’ program, calendars, address books, and similar fun-
ctions one might desire. The overall size of the system is about 1.6
megabytes, which means that you cannot have access to all of the
“‘accessories’’ on a dual floppy disk system without shuffling a
number of disks on program demand.

If your data requirements are not expected to exceed a 340K file
size, or you are willing to split your data files into a number of
340K portions, DESKMATE will take care of most any task you
could ask of it.

Keeping in mind that I have not totally mastered DESKMATE,
I feel it is a product that will allow you to do many things, while
having to learn only one software package. It does make the
assumption that it is the only software system you will ever need,
and for most people this assumption may be quite true. Il

39

Editorial
(Continued from page 3)

Inorder to check on the accuracy of the
transfers, I transferred files from the AT to

- the MAC and back to the AT and then

compared the original files with the trans-
ferred files. Once I had solved the problem
of the defective drive, I found no more
errors. To be on the safe side, I set VER-
IFY ON before transferring files.

There are several other features in
addition to reading, writing, and format-
ting MAC disks. They state that the TC
copy function will backup most “copy pro-
tected” disks. According to their manual it
will even backup some non-IBM formats
such as Apple, Amiga, and Atari, but will
not backup all protected Apple and Atari
disks. The TCM functionwill read a master
disk just once and duplicate it from mem-
ory, which will greatly speed up disk dupli-
cation. The TE track editor allows you to
inspect and change the data on any track.

I have only used the MAC disk func-
tions which have worked very well, and
consider it a necessity for file transfers.

ANSI C?

I have been asked why we don’t adhere
tothe proposed ANSI Cstandards in all of
our published code listings.

There are several reasons, one of which
is that there are thousands of older C
compilers in use which do not incorporate
the newer ANSI features. I prefer to show
illustrative code samples which will run on
as many compilers as possible, and do not
assume that all readers have the latest ver-
sion. Itisimportant that beginner’s first few
attempts work so that they are encouraged
to continue, and I want to minimize the
complications due to possible unsupported
compiler features.

Another reason is to show the code
which people are actually using. When (if?)
the ANSI features are in widespread use
they will appear in the code because that is
the way people are writing code instead of
being artificially forced as examples of what
the experts feel that everyone should do.

T'look at things from the viewpoint of a
user who needs to get a job done and
continue with their business. Anything

which works is fine, and simple C routines
such as mine have been in widespread use
for years without the proposed ANSI en-
hancements. By the time someone is writ-
ing the large involved C programs which
require the enhancements, they will have
advanced to the point where they have
picked up the enhancements. A majority of
my C programs are still written for CP/M
using the BDS C compiler which does not
include the new ANSI features, but I see
that Leor is updating it for the Z-System
and TP’ll have to call him to find out if they
have been added. ‘

I'm not against the ANSI enhance-
ments, and would welcome some articles
which demonstrate to a user why and how
they should be used. Practical reasons
where and why they should be used inorder
to avoid potential problems. [

Computer Aided Publishing

(Continued from page 24)

entirely different needs--but that’s what
everbody else is talking about. I wanted to
point out that DTP is only a portion of
publishing.

DPT Is Still Young

‘What we know as DTP is in its infancy.
I compare its stage of development with
that of the early Apple ITin 1981. It is going
to have to become much more powerful
and complex, and at the same time easier to
use. While Parnau properly classifies DTP
as Tabletop Typesetting, I am looking at
the large picture of what I call CAP (Com-
puter Aided Publishing).

DTP is being approached from two
divergent directions by people with differ-
ent veiwpoints. One is the person with little
or no publishing or typographic experince
who is impressed by flashy screens and the
point-and-click mouse. They are excited
about being able to set type at all--evenif it
isn’t very good. The other is the experi-
enced typographer or typesetter who is
already producing high quality type. They
want to know how DTP can do it better,
faster,and less expensive, with less training.

As DTP matures, it will serve the entire
spectrum of users, from the four-times-a-
year club newsletter editor to the full time

40

professional. It will not do this with a single
class of product. There will have to be
different products for different needs, and
the active workers will have to be adept at
using different tools for different functions
rather than one huge awkward swiss army
knife like monster. Some of these tools will
be very large and powerful, and some of
them will be small and simple. They will
have towork together eventhough theyare
designed by different people and sold by
different vendors. They’ll also have to run
across a multitude of different hardware
systems. The open system architecture
developments in the UNIX world are an
indication of the future directions.

Changes are occurring so rapidly that it
is impossible to keep track of what is going
on. There is no sense of direction. It is like
a panic with everyone running in different
directions. There is explosive develop-
ment, and as the old adage says, “What
goes up fast will come down fast.” There
will be a tremendous washout during the
next two years. It will be brutal for the
losers, but we will end up with a core of
mature stable products.

Where Do We Go From Here?

I'm coming at this from the direction of
a publisher and typographer who happens
to use computers, rather than a computer

user who happens to publish. I started
hand composing metal type in 1948, and I
usually have a pretty good idea of where I
want things and how I want themto look. I
don’t always end upwith what I'want, that’s
why I'll be doing a lot of work in the area of
CAP. The majority of my work is with text
rather than with graphics, and this has a
major impact on my viewpoints.

In order to realize the full potential of
CAP, those of us who program will have to
cooperate with the vendors and participate
in the development. The laser printer is the
keystone to CAP, and we will have to learn
how to program directly in H-P’s PCL and
in PostScript so that we can gencrate the
third party utilities which are so sorely
needed.

Products

Desktop Publishing: The Awful Truth,
by Jeffery R. Parnau, $19.95, Parnau
Graphics, Inc., P.O. Box 244, New Berlin,
WI 53151 (414) 784-7252.

PageMaker 3.0, Aldus Corporation, 411
First Avenue South, Seattle, WA 98104
(206) 622-5500.

Digi-duit! 2.0 font generation software
for the H-P LaserJet, DIGI-FONTS, Inc.,
3000 Youngfield St., Suite 285, Lakewood,
CO 80215 (303) 233-8113.]

The Computer Journal / Issue #38

Issue Number 1:

RS-232 interface Part One
Telecomputing with the Apple Il
Beginner's Column: Getting Started
Build an *"Epram”

Issue Number 2:

Issue Number 18:

* Parallei Interface for Apple |l Game Port
¢ The Hacker's MAC: A Letter from Lee
Felsenstein

* $-100 Graphics Screen Dump

s The LS-100 Disk Simulator Kit

« BASE: Part Six

¢ Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

issue Number 19:

File Transfer Programs for CP/M

RS-232 Interface Part Two

Build Hardware Print Spooler: Part 1
Review of Floppy Disk Formats

Sending Morse Code with an Apple li

* Beginner's Column: Basic Concepts and
Formulas

Issue Number 3:

¢ Add an 8087 Math Chip to Your Dual
Processor Board

* Build an A/D Converter for Apple If

* Modems for Micros

* The CP/M Operating System

¢ Build Hardware Print Spooler: Part 2

Issue Number 4:

* Optronics, Part 1 Detecting,
Generating, and Using Light in Electronics
¢ Multi-User: An Introduction

* Making the CP/M User Function More
Usefut

* Build Hardware Print Spooler: Part 3

e Beginner's Column: Power Supply
Design

issue Number 6:

* Build High Resolution S-100 Graphics
Board: Part 1

* System Integration, Part 1: Selecting
System Components

* Optronics, Part 3: Fiber Optics

¢ Controlling DC Motors

* Multi-User: Local Area Networks

* DC Motor Apptications

Issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

e BASE: Part Four

* Using the S-100 Bus and the 68008 CPU
* Interfacing Tips & Troubles: Build a
“"Jellybean” Logic-to-RS232 Converter

The Computer Journal / Issue #38

¢ Using The Extensibility of Forth

« Extended CBIOS

* A $500 Superbrain Computer

¢ BASE: Part Seven

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

* Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

* Designing an 8035 SBC

¢ Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

¢ Soldering and Other Strange Tales

e Build a S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

* Extending Turbo Pascal: Customize with
Procedures and Functions

¢ Unsoldering: The Arcane Art

* Analog Data Acquisition and Controi:
Connecting Your Computer to the Real
World

¢ Programming the 8035 SBC

Issue Number 22:

« NEW-DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
e The SCSI Interface: Introductory
Column

¢ Using Turbo Pascal ISAM Files

* The AMPRO Little Board Column

Issue Number 23:

¢ C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCSI Interface: Introduction to SCSI
e NEW-DOS: The Console Command
Processor

¢ Editing The CP/M Operating System

« INDEXER: Turbo Pascal Program to
Create Index

* The AMPRO Little Board Column

THE COMPUTER JOURNAL

Back Issues

Issue Number 24:

« Selecting and Building a System

s The SCSI Interface: SCSI Command
Protocol

¢ Introduction to Assembly Code for CPIM
s The C Column: Software Text Filters

* AMPRO 186 Column: Installing MS-DOS
Software

+ The Z Column

« NEW-DOS: The CCP Internal Commands
* ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Littie Board

Issue Number 25:

Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Building a SCSI Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
ZSIG Column

Issue Number 26:

* Bus Systems: Selecting a System Bus

« Using the SB180 Real Time Clock

* The SCSI Interface: Software for the
SCSI Adapter

¢ Inside AMPRO Computers

¢ NEW-DOS: The CCP Commands Con-
tinued

* ZSIG Corner

» Affordable C Compilers

¢ Concurrent Multitasking: A Review of
DoubieDOS

Issue Number 27:

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

¢ The Art of Source Code Generation:
Disassembling Z-80 Software

* Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

¢ The C Column: A Graphics Primitive
Package

* The Hitachi HD64180: New Lite for 8-bit
Systems

* ZSIG Corner: Command Line Generators
and Aliases

o A Tutor Program for Forth: Writing a For-
th Tutor in Forth

* Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

¢ Starting your Own BBS

* Build an A/D Converter for the Ampro
L.B.» HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

* Using SCSI for Real Time Control

* Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

s Choosing a Language for Machine Con-
tro!

Issue Number 29:

* Better Software Filter Design

e MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

¢ Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 68000?
* Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* The ZCPR3 Corner

Issue Number 30:

* Double Density Floppy Controller

e ZCPR3 IOP for the Ampro L.B.

* 3200 Hacker's Language

* MDISK: 1 Meg RAM disk for Ampro LB,
part 2

* Non-Preemptive Multitasking

* Software Timers for the 68000

* Lilliput Z-Node

* The ZCPR3 Corner

* The CP/M Corner

issue Number 31:

* Using SCSI for Generalized /0

* Communicating with Floppy Disks: Disk
parameters and their variations.

¢ XBIOS: A replacement BIOS for the
SB180.

e K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

« Designing Operating Systems: A ROM
based O.S. for the Z81.

+ Advanced CP/M: Boosting Performance.
e Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

s WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCHl terminal
based systems.

* K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

¢ The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

* Data File Conversion: Writing a filter to
convert foreign file formats.

* Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

* DataBase: The first in a series on data
bases and information processing.

* SCSI for the $-100 Bus: Another example
ot SCSI's versatility.

* A Mouse on any Hardware: impiemen-
ting the mouse on a Z80 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

* 2CPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

41

Issue Number 34:

* Developing a File Encryption System:
Scramble data with your customized en-

cryption/password system.

* DataBase: A continuation of the
database primer series.

« A Simple Multitasking Executive:
Designing an embedded controller
multitasking system.

e ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

¢ New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

s Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPM2.2.

* Macintosh Data File Conversion in Tur-
bo Pascal.

Issue Number 35:

* All This & Modula-2: A Pascal-like aiter-
native with scope and parameter passing.

e A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiable assem. souce code.
* Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the intel and Motorola CPUs.
* S-100 Eprom Burner: a project for S-100
hardware hackers.

s Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

¢ REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

e ZCPR3 Corner: How shells work,
cracking code, and remaking WordStar 4.0.

Issue Number 36:

» Information Engineering: Introduction

* Modula-2: A list of reference books

* Temperature Measurement & Controi:
Agricultural computer application

* ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILEI
* Real Computing: NS32032 hardware for
experimenter, CPU’s in series, software
options

¢ SPRINT: A review

* ZCPRJ3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

* Advanced CPIM: Environmental
programming

Issue Number 37:

e C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

e« ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

« Information Engineering: Basic Concep-
ts; fields, field definition, client
worksheets

e Shells: Using ZCPR3 named shell
variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

* Advanced CP/M: Raw and cooked con-
sole /O

* Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

¢ ZSDOS-Anatomy of an Operating
System: Part 1

Make certain that TCJ follows you
to your new address. Send both old and

new address along with your

expiration number that appears on

your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

TCJ ORDER FORM

Subscriptions U.S. Canada Surface Total
Foreign
6 issues per year
O New O Renewal lyear $16.00 $24.00
2years $28.00

Back Issues ———————————— — — — — — $3.50ea. $3.50ea. $4.75ea.
| Six or more-—————"—————————————— $3.00 ea. $3.00ea $4.25 ea.
| #'s
| All funds must be in U.S. dollars ona U.S. bank. Total Enclosed
| O Checkenclosed O VISA O MasterCard Card#
Expiration date

Name

Address

City State Z1p i

THE COMPUTER JOURNAL

438 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

Computer Corner

(Continued from page 44)

would not allow me to print A and B size
drawings on paper the same size. The
program determines for you the best way
to print the drawing, whether or not it is
- what you want. I wasted at least 30 or 40
sheets of paper trying to get an A size
drawing to fill a full sheet of printer paper
before giving up. Through changing con-
figuration of the printer it is possible to
get close to one to one output, but never
better than 80%. That is not as bad when
~compared to their PCB program, it does
not support printers at all. Yes, that is
correct, no printers, only very expensive
plotters. That is totally unacceptable from
my view point.

When you design the schematic in Or-
CADSDT, you create a Netlist, which the
PCB program then converts into the
board drawings. You can do this either
completely manually, or sit back and wat-
ch it do it automatically. I enjoy watching
their DEMO program layout the traces.
You first decide where you want the com-
ponents, test the traces with a RAT-
SNEST option (gives a vector analysis of
how many lines are going where) so you
can optimize the layout. After that you
layout the traces and then what? My
problem enters here, as I want to be able
to see a version of the board on a printed
page before I carry disk in hand to the
board maker. With a light table (or a sun-
ny window) you can see how the layers all
fit together and decide on possible
"changes. I don’t care what anyone says,
experience has proven to me that you
can’t make those decisions on a monitor
screen.

While designing this system, we have
also decided on a simple mother board
that will hold some AC lines, a few relays,
and the 12V supply components. A prin-
ted layout would be more than adequate
as all traces on this board will be at least a
quarter inch wide (high current paths).
Having to use a plotter here is not
justified and as such would mean hand
laying of the board, which is what the
program is suppose to eliminate. My boss
assures me that he has complained before
about some of their features and got a
new update within days, we will see
(report later).

Goodies

When I often talk to Art (TCJ’s editor
and publisher) he always reminds me of
how lucky it is I live near Silicon Valley.
Well I was able to get several printers and
terminals the other day at auction and it
reminded me that many chances like this
are available anywhere in the U.S. You
see this was not an electronic company.
The auction, or to be more correct BID

The Computer Journal / Issue #38

SALE, was a large company in the area. 1
had worked there for several years before
a friend told me of the bid sales they held.
Some of the items are used government,
but some are also their own. The com-
puter items are usually their own and so
have less requirements for purchase.

What I am getting at, is that many
companies have sealed bid sales to sell
used equipment. These companies in
many cases have little knowledge or
dealings with the electronic industry. They
simply bought computer systems many
years ago and are now upgrading. Their
old systems may be well used (suitable for
parts only) or simply not compatible with
new systems. You will probably have
some trouble getting people to tell you
about the sales as they don’t want to lose
the great bargains. But if you persist and
call around often you may get lucky and

~ pick up some great bargains for pennies

on the dollar. 1 got six working printers
for half the cost of one of them.

Multi-Tasking

Last month I mentioned pre-emptive
Multi-tasking and said I would comment
on it. Well I did read some about multi-
tasking but haven’t found out about what
the Forth people are complaining about. 1
have decided (right or wrong) that pre-
emptive is much like what use to be called
context switching. As a more important
interrupt arrives (higher level task), the
current interrupt task is halted and the
newer task is started. Current Forth swit-
ching is based on flags and round robin
process. Basically in Forth, the main ker-
nel is polling task flags. The interrupt sets
the flag. The next time through the
polling, the processor then handles the
routine. A interrupt will stop the current
routine, but only long enough to set a flag
and store the address of the routine.

Pre-emptive however wants things to
happen right now. Forth’s low over head
in the kernel works pretty fast, sometime
faster than true pre-emptive systems. But
then this is not a true preemptive system,
which is what (I feel) the purists want. I
will keep looking for better explanations
of the problem.

There are of course more problems and
ways of handling multiple tasks. I have
had the chance lately to do it another way.
One of my clients needed a network and 1
installed Novel Netware on a new 80386
system. For those who have not had the
chance of installation and feel the $300 to
$400 that a dealer wants to charge for
doing it is too much, I have this to say,
‘“‘pay it.”” There are lots of little things
that are not mentioned in all the books.
That is right all the books, eleven in all. T
knew I was in trouble when I opened the
box and found the eleven manuals. I was
in even bigger trouble when one of the
books was an index to the manuals.

Then I found the three boxes of disks.
Just under 50 disk are needed. Netware is
no longer copy protected so you can back
the disks up without any special
programs. Making it work however is
another story. We had one problem that
took almost a week to solve. I would start
to load the system on the 386 and it would
give an error message that the hard disk
was not compatible. It took me many calls
to find out what the error message meant
and even longer to fix it. It seems the
program has its own table of hard disk
setups inside the program. There are some
reserved numbers associated with hard
disk formats (a number is assigned in the
AT system for each possible type of hard
disk—how many tracks, sectors, heads).
Our system was using one of those reser-
ved numbers for the 80 megabyte drive.

The only way around this problem is to
describe a drive as one that is close. I got it
to work by using a number associated
with a 8 head drive and not the 9 head
drive we have. The best solution was
buying a special program that patches
netware hard disk driver so you can get
full use of the hard disk (which you will
need). I have since found other little
problems with netware, but the main one
is security. Networks run by controlling
access to directories and programs. Get-
ting users to decide and keep track of that
information is a big headache. I am glad 1
got pulled off the network system on to
the 8048 projects. 8048s are more fun than
networks by a long shot.

Finally

WordStar says I am into five pages so I
guess I had better stop before Art wonders
what happened. This year is starting out
to be a big change for me, especially with
all the projects before me. I hope yours
are the same! W

SOURCES

New Micros, Inc., has a new phone num-
ber
(214) 339-2204

Disk Manager-N, is an integrated sof-
tware package which provides non-
standard disk drive support for Novell
network. They claim that it will drastically
reduce installation time, provide custom
disk partitions, and more. It is available for
$249.95 from Ontrack Computer Systems,
Inc., 6200 Bury Drive, Eden Prairie, MN
55346, phone 1-800-752-1333

43

THE COMPUTER CORNER

by Blill Kibler

The new year has entered with a bang
around here. My work has become prac-
tically full time and I should become a
father within days. Add on to that all the
new areas I have gotten into lately and I
have a full column for a change.

Real Time Systems

My work is covering new grounds. We
(the company I work for) have just lan-
ded a contract to reverse engineer a
product. The system uses a 8048 con-
troller in place of a complex system of
relays and timers. I keep saying I could do
the whole thing with relays, but I doubt it
would be cost effective. What I would lose
however is the flexibility and expansion
options.

I have talked with the client now and
find they are real interested in those ex-
pansion options. It seems a major
problem with this company (and many
like it) is diagnostics and training of
technicians. That is why they want us to
add features to the software so they can
use less skilled workers. 1 feel they are
taking the wrong approach and will find
out in the long run they still need more
qualified help.

I can and will write new help options in-
to the system, but nothing can replace well
trained technicians. Our new president,
George Bush, is also faced with this
problem. Our whole economy is in a small
slide because of poorly trained help and
too many get rich quick business people.
Businesses, the country, and anybody
who wants better output has to start with
better input. Workers are a part of the in-
put cycle.

8048

Surprisingly, the 8048 is still in produc-
tion and in fact being used in a number of
places. I have since found out the new AT
keyboards use a 8048 which talks to a 8051
in the machine. Last month I talked about
controller chips and for my current
project I have been reviewing all the dif-
ferent features and styles available. They
all have different amounts of ROM and
RAM, about the same number of I1/0 (in-
put/output) lines, some with A/D (analog
to digital) converters, and simple internal

44

architecture. 1 have looked at out of
production units like the old Intel 8022
which would met my needs perfectly.

My needs are pretty simple to start
with, 21 170 line (15 outputs), a timer or
clock unit, and it would help to have a
A/D unit. Currently the A/D is handled

“Our whole economy is
in a small slide because
of poorly trained help and
too many get rich quick
business people.”

by using two voltage comparators to
trigger input lines at preset voltages. This
is a very simple system now. We plan to
replace two sets of input items with a
keypad and read out. This will replace
some switches and a meter face. It will
also give us some read outs to display
error and diagnostic messages. The
features are really not new to the elec-
tronic industry as such, but our client is
tickled to death to be able to have them.
Which is another way of saying that many
technical fields are still not into the high
tech age yet.

My replacement CPU choice is curren-
tly between 4 options. Keeping the 8048
style (maybe a 8049 with 4K) and just ex-
panding the software to take into effect
the new keypad. This is very possible as
the old code only uses 300 bytes of the 1K
of memory. The next choice is a Intel
8098, the A/D version of the 8096 series
and closest new product to the old 8022.
The 8096 is a 16 bit internal device so
many new options open up with it.

Not to slight the Motorola people, I
have been looking at the 68705R3 and the
68HCI1. The 68705R3 has some good
features like A/D and self programming
ability. The 68HC11 is the newest of the
controliers and does have a Forth option
available. I have been checking both
features and price and find that all these

units are pretty close in all ways. What I
have to do is balance availability of device
(second sources?), cost against feature (if
no A/D on board what does it cost to add
one), support devices and real estate needs
(lots of board space and many support
chips vs. one chip at higher cost).

The project is moving along quickly
and I am in the middle of all the other
component selections. Once those are
done I will then settle on the CPU design.
At present I do not have a preference,
even though I brought home the 68HC11
evaluation board. I can’t say much about
that, other than it appears to be a good
way to get to the know a device before
committing it to a design. More next time.

Schematic Drawing

The previous project and now this one
too, require schematic and PC artwork.
Our company is trying to be state of the
art and has purchased a CAD package.
The boss used ACAD and EE designer
before. He didn’t like either for PCB
work. He turned to OrCAD instead, and I
am very glad. I have played with both of
the other products and found them largely
too complex and user unfriendly to be of
any use. They both fit the category in
which I currently place many of the desk
top publisher products—which is that I
can usually do everything faster without
them than with them.

OrCAD is different. My boss gave me a
20 minute introduction to OrCADSDT
(the schematic program) and I was off and
running. Now I am sure my previous ex-
perience with mouse and other programs
helped, but I find the user interface very
easy to learn and deal with, They have the
right amount of keyboard and mouse in-
teraction to make it a productive boost
and not hindrance. It does have faults
however. The program falls down com-
pletely for me in output support. The
schematic program supports just about all
the printer styles and the PCB (printed
circuit board design program) supports
most board layout plotters.

The big problem is how they support
these devices. The schematic program

(Continued on page 43)

The Computer Journal / Issue #38

